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Preface

This book is now in its fourth edition. Each edition has corresponded to a different phase in the
way computer networks were used. When the first edition appeared in 1980, networks were an
academic curiosity. When the second edition appeared in 1988, networks were used by
universities and large businesses. When the third edition appeared in 1996, computer
networks, especially the Internet, had become a daily reality for millions of people. The new
item in the fourth edition is the rapid growth of wireless networking in many forms.

The networking picture has changed radically since the third edition. In the mid-1990s,
numerous kinds of LANs and WANSs existed, along with multiple protocol stacks. By 2003, the
only wired LAN in widespread use was Ethernet, and virtually all WANs were on the Internet.
Accordingly, a large amount of material about these older networks has been removed.

However, new developments are also plentiful. The most important is the huge increase in
wireless networks, including 802.11, wireless local loops, 2G and 3G cellular networks,
Bluetooth, WAP, i-mode, and others. Accordingly, a large amount of material has been added
on wireless networks. Another newly-important topic is security, so a whole chapter on it has
been added.

Although Chap. 1 has the same introductory function as it did in the third edition, the contents
have been revised and brought up to date. For example, introductions to the Internet,
Ethernet, and wireless LANs are given there, along with some history and background. Home
networking is also discussed briefly.

Chapter 2 has been reorganized somewhat. After a brief introduction to the principles of data
communication, there are three major sections on transmission (guided media, wireless, and
satellite), followed by three more on important examples (the public switched telephone
system, the mobile telephone system, and cable television). Among the new topics covered in
this chapter are ADSL, broadband wireless, wireless MANs, and Internet access over cable and
DOCSIS.

Chapter 3 has always dealt with the fundamental principles of point-to-point protocols. These
ideas are essentially timeless and have not changed for decades. Accordingly, the series of
detailed example protocols presented in this chapter is largely unchanged from the third
edition.

In contrast, the MAC sublayer has been an area of great activity in recent years, so many
changes are present in Chap. 4. The section on Ethernet has been expanded to include gigabit
Ethernet. Completely new are major sections on wireless LANs, broadband wireless, Bluetooth,
and data link layer switching, including MPLS.

Chapter 5 has also been updated, with the removal of all the ATM material and the addition of
additional material on the Internet. Quality of service is now also a major topic, including
discussions of integrated services and differentiated services. Wireless networks are also
present here, with a discussion of routing in ad hoc networks. Other new topics include NAT
and peer-to-peer networks.

Chap. 6 is still about the transport layer, but here, too, some changes have occurred. Among
these is an example of socket programming. A one-page client and a one-page server are
given in C and discussed. These programs, available on the book's Web site, can be compiled
and run. Together they provide a primitive remote file or Web server available for
experimentation. Other new topics include remote procedure call, RTP, and transaction/TCP.



Chap. 7, on the application layer, has been more sharply focused. After a short introduction to
DNS, the rest of the chapter deals with just three topics: e-mail, the Web, and multimedia. But
each topic is treated in great detail. The discussion of how the Web works is now over 60
pages, covering a vast array of topics, including static and dynamic Web pages, HTTP, CGI
scripts, content delivery networks, cookies, and Web caching. Material is also present on how
modern Web pages are written, including brief introductions to XML, XSL, XHTML, PHP, and
more, all with examples that can be tested. The wireless Web is also discussed, focusing on i-
mode and WAP. The multimedia material now includes MP3, streaming audio, Internet radio,
and voice over IP.

Security has become so important that it has now been expanded to a complete chapter of
over 100 pages. It covers both the principles of security (symmetric- and public-key
algorithms, digital signatures, and X.509 certificates) and the applications of these principles
(authentication, e-mail security, and Web security). The chapter is both broad (ranging from
quantum cryptography to government censorship) and deep (e.g., how SHA-1 works in detail).

Chapter 9 contains an all-new list of suggested readings and a comprehensive bibliography of
over 350 citations to the current literature. Over 200 of these are to papers and books written
in 2000 or later.

Computer books are full of acronyms. This one is no exception. By the time you are finished
reading this one, the following should ring a bell: ADSL, AES, AMPS, AODV, ARP, ATM, BGP,
CDMA, CDN, CGl, CIDR, DCF, DES, DHCP, DMCA, FDM, FHSS, GPRS, GSM, HDLC, HFC, HTML,
HTTP, ICMP, IMAP, ISP, ITU, LAN, LMDS, MAC, MACA, MIME, MPEG, MPLS, MTU, NAP, NAT,
NSA, NTSC, OFDM, OSPF, PCF, PCM, PGP, PHP, PKI, POTS, PPP, PSTN, QAM, QPSK, RED, RFC,
RPC, RSA, RSVP, RTP, SSL, TCP, TDM, UDP, URL, UTP, VLAN, VPN, VSAT, WAN, WAP, WDMA,
WEP, WWW, and XML But don't worry. Each will be carefully defined before it is used.

To help instructors using this book as a text for a course, the author has prepared various
teaching aids, including

A problem solutions manual.

Files containing the figures in multiple formats.

PowerPoint sheets for a course using the book.

A simulator (written in C) for the example protocols of Chap. 3.

A Web page with links to many tutorials, organizations, FAQs, etc.

The solutions manual is available directly from Prentice Hall (but only to instructors, not to
students). All the other material is on the book's Web site:

http://www.prenhall.com/tanenbaum

From there, click on the book's cover.

Many people helped me during the course of the fourth edition. | would especially like to thank
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Bisdikian, Kees Bot, Scott Bradner, Jennifer Bray, Pat Cain, Ed Felten, Warwick Ford, Kevin Fu,
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Philip Homburg, Philipp Hoschka, David Green, Bart Jacobs, Frans Kaashoek, Steve Kent,
Roger Kermode, Robert Kinicki, Shay Kutten, Rob Lanphier, Marcus Leech, Tom Maufer, Brent
Miller, Shivakant Mishra, Thomas Nadeau, Shlomo Ovadia, Kaveh Pahlavan, Radia Perlman,
Guillaume Pierre, Wayne Pleasant, Patrick Powell, Thomas Robertazzi, Medy Sanadidi, Christian
Schmutzer, Henning Schulzrinne, Paul Sevinc, Mihail Sichitiu, Bernard Sklar, Ed Skoudis, Bob
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Chapter 1. Introduction

Each of the past three centuries has been dominated by a single technology. The 18th century was the era of
the great mechanical systems accompanying the Industrial Revolution. The 19th century was the age of the
steam engine. During the 20th century, the key technology was information gathering, processing, and
distribution. Among other developments, we saw the installation of worldwide telephone networks, the invention
of radio and television, the birth and unprecedented growth of the computer industry, and the launching of
communication satellites.

As a result of rapid technological progress, these areas are rapidly converging and the differences between
collecting, transporting, storing, and processing information are quickly disappearing. Organizations with
hundreds of offices spread over a wide geographical area routinely expect to be able to examine the current
status of even their most remote outpost at the push of a button. As our ability to gather, process, and distribute
information grows, the demand for ever more sophisticated information processing grows even faster.

Although the computer industry is still young compared to other industries (e.g., automobiles and air
transportation), computers have made spectacular progress in a short time. During the first two decades of their
existence, computer systems were highly centralized, usually within a single large room. Not infrequently, this
room had glass walls, through which visitors could gawk at the great electronic wonder inside. A medium-sized
company or university might have had one or two computers, while large institutions had at most a few dozen.
The idea that within twenty years equally powerful computers smaller than postage stamps would be mass
produced by the millions was pure science fiction.

The merging of computers and communications has had a profound influence on the way computer systems are
organized. The concept of the "computer center” as a room with a large computer to which users bring their work
for processing is now totally obsolete. The old model of a single computer serving all of the organization's
computational needs has been replaced by one in which a large number of separate but interconnected
computers do the job. These systems are called computer networks. The design and organization of these
networks are the subjects of this book.

Throughout the book we will use the term "computer network" to mean a collection of autonomous computers
interconnected by a single technology. Two computers are said to be interconnected if they are able to
exchange information. The connection need not be via a copper wire; fiber optics, microwaves, infrared, and
communication satellites can also be used. Networks come in many sizes, shapes and forms, as we will see
later. Although it may sound strange to some people, neither the Internet nor the World Wide Web is a computer
network. By the end of this book, it should be clear why. The quick answer is: the Internet is not a single network
but a network of networks and the Web is a distributed system that runs on top of the Internet.

There is considerable confusion in the literature between a computer network and a distributed system. The key
distinction is that in a distributed system, a collection of independent computers appears to its users as a single
coherent system. Usually, it has a single model or paradigm that it presents to the users. Often a layer of
software on top of the operating system, called middleware, is responsible for implementing this model. A well-
known example of a distributed system is the World Wide Web, in which everything looks like a document (Web

page).

In a computer network, this coherence, model, and software are absent. Users are exposed to the actual
machines, without any attempt by the system to make the machines look and act in a coherent way. If the
machines have different hardware and different gperating systems, that is fully visible to the users. If a user

wants to run a program on a remote machine, he Mlhas to log onto that machine and run it there.

[T]

"He" should be read as "he or she" throughout this book.

In effect, a distributed system is a software system built on top of a network. The software gives it a high degree
of cohesiveness and transparency. Thus, the distinction between a network and a distributed system lies with
the software (especially the operating system), rather than with the hardware.



Nevertheless, there is considerable overlap between the two subjects. For example, both distributed systems
and computer networks need to move files around. The difference lies in who invokes the movement, the system
or the user. Although this book primarily focuses on networks, many of the topics are also important in
distributed systems. For more information about distributed systems, see (Tanenbaum and Van Steen, 2002).

1.1 Uses of Computer Networks

Before we start to examine the technical issues in detail, it is worth devoting some time to pointing out why
people are interested in computer networks and what they can be used for. After all, if nobody were interested in
computer networks, few of them would be built. We will start with traditional uses at companies and for
individuals and then move on to recent developments regarding mobile users and home networking.

1.1.1 Business Applications

Many companies have a substantial number of computers. For example, a company may have separate
computers to monitor production, keep track of inventories, and do the payroll. Initially, each of these computers
may have worked in isolation from the others, but at some point, management may have decided to connect
them to be able to extract and correlate information about the entire company.

Put in slightly more general form, the issue here is resource sharing, and the goal is to make all programs,
equipment, and especially data available to anyone on the network without regard to the physical location of the
resource and the user. An obvious and widespread example is having a group of office workers share a common
printer. None of the individuals really needs a private printer, and a high-volume networked printer is often
cheaper, faster, and easier to maintain than a large collection of individual printers.

However, probably even more important than sharing physical resources such as printers, scanners, and CD
burners, is sharing information. Every large and medium-sized company and many small companies are vitally
dependent on computerized information. Most companies have customer records, inventories, accounts
receivable, financial statements, tax information, and much more online. If all of its computers went down, a bank
could not last more than five minutes. A modern manufacturing plant, with a computer-controlled assembly line,
would not last even that long. Even a small travel agency or three-person law firm is now highly dependent on
computer networks for allowing employees to access relevant information and documents instantly.

For smaller companies, all the computers are likely to be in a single office or perhaps a single building, but for
larger ones, the computers and employees may be scattered over dozens of offices and plants in many
countries. Nevertheless, a sales person in New York might sometimes need access to a product inventory
database in Singapore. In other words, the mere fact that a user happens to be 15,000 km away from his data
should not prevent him from using the data as though they were local. This goal may be summarized by saying
that it is an attempt to end the "tyranny of geography.”

In the simplest of terms, one can imagine a company's information system as consisting of one or more
databases and some number of employees who need to access them remotely. In this model, the data are
stored on powerful computers called servers. Often these are centrally housed and maintained by a system
administrator. In contrast, the employees have simpler machines, called clients, on their desks, with which they
access remote data, for example, to include in spreadsheets they are constructing. (Sometimes we will refer to
the human user of the client machine as the "client," but it should be clear from the context whether we mean the
computer or its user.) The client and server machines are connected by a network, as illustrated in Fig. 1-1. Note
that we have shown the network as a simple oval, without any detail. We will use this form when we mean a
network in the abstract sense. When more detail is required, it will be provided.

Figure 1-1. A network with two clients and one server.
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This whole arrangement is called the client-server model. It is widely used and forms the basis of much network
usage. It is applicable when the client and server are both in the same building (e.g., belong to the same
company), but also when they are far apart. For example, when a person at home accesses a page on the
World Wide Web, the same model is employed, with the remote Web server being the server and the user's
personal computer being the client. Under most conditions, one server can handle a large number of clients.

If we look at the client-server model in detail, we see that two processes are involved, one on the client machine
and one on the server machine. Communication takes the form of the client process sending a message over
the network to the server process. The client process then waits for a reply message. When the server process
gets the request, it performs the requested work or looks up the requested data and sends back a reply. These
messages are shown in Fig. 1-2.

Figure 1-2. The client-server model involves requests and replies.
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A second goal of setting up a computer network has to do with people rather than information or even
computers. A computer network can provide a powerful communication medium among employees. Virtually
every company that has two or more computers now has e-mail (electronic mail), which employees generally
use for a great deal of daily communication. In fact, a common gripe around the water cooler is how much e-mail
everyone has to deal with, much of it meaningless because bosses have discovered that they can send the
same (often content-free) message to all their subordinates at the push of a button.

But e-mail is not the only form of improved communication made possible by computer networks. With a
network, it is easy for two or more people who work far apart to write a report together. When one worker makes
a change to an online document, the others can see the change immediately, instead of waiting several days for
a letter. Such a speedup makes cooperation among far-flung groups of people easy where it previously had
been impossible.

Yet another form of computer-assisted communication is videoconferencing. Using this technology, employees
at distant locations can hold a meeting, seeing and hearing each other and even writing on a shared virtual
blackboard. Videoconferencing is a powerful tool for eliminating the cost and time previously devoted to travel. It
is sometimes said that communication and transportation are having a race, and whichever wins will make the
other obsolete.

A third goal for increasingly many companies is doing business electronically with other companies, especially
suppliers and customers. For example, manufacturers of automobiles, aircraft, and computers, among others,
buy subsystems from a variety of suppliers and then assemble the parts. Using computer networks,
manufacturers can place orders electronically as needed. Being able to place orders in real time (i.e., as
needed) reduces the need for large inventories and enhances efficiency.



A fourth goal that is starting to become more important is doing business with consumers over the Internet.
Airlines, bookstores, and music vendors have discovered that many customers like the convenience of shopping
from home. Consequently, many companies provide catalogs of their goods and services online and take orders
on-line. This sector is expected to grow quickly in the future. It is called e-commerce (electronic commerce).

1.1.2 Home Applications

In 1977, Ken Olsen was president of the Digital Equipment Corporation, then the number two computer vendor
in the world (after IBM). When asked why Digital was not going after the personal computer market in a big way,
he said: "There is no reason for any individual to have a computer in his home." History showed otherwise and
Digital no longer exists. Why do people buy computers for home use? Initially, for word processing and games,
but in recent years that picture has changed radically. Probably the biggest reason now is for Internet access.
Some of the more popular uses of the Internet for home users are as follows:

1. Access to remote information.

2. Person-to-person communication.
3. Interactive entertainment.

4. Electronic commerce.

Access to remote information comes in many forms. It can be surfing the World Wide Web for information or just
for fun. Information available includes the arts, business, cooking, government, health, history, hobbies,
recreation, science, sports, travel, and many others. Fun comes in too many ways to mention, plus some ways
that are better left unmentioned.

Many newspapers have gone on-line and can be personalized. For example, it is sometimes possible to tell a
newspaper that you want everything about corrupt politicians, big fires, scandals involving celebrities, and
epidemics, but no football, thank you. Sometimes it is even possible to have the selected articles downloaded to
your hard disk while you sleep or printed on your printer just before breakfast. As this trend continues, it will
cause massive unemployment among 12-year-old paperboys, but newspapers like it because distribution has
always been the weakest link in the whole production chain.

The next step beyond newspapers (plus magazines and scientific journals) is the on-line digital library. Many
professional organizations, such as the ACM (www.acm.org) and the IEEE Computer Society
(www.computer.org), already have many journals and conference proceedings on-line. Other groups are
following rapidly. Depending on the cost, size, and weight of book-sized notebook computers, printed books may
become obsolete. Skeptics should take note of the effect the printing press had on the medieval illuminated
manuscript.

All of the above applications involve interactions between a person and a remote database full of information.
The second broad category of network use is person-to-person communication, basically the 21st century's
answer to the 19th century's telephone. E-mail is already used on a daily basis by millions of people all over the
world and its use is growing rapidly. It already routinely contains audio and video as well as text and pictures.
Smell may take a while.

Any teenager worth his or her salt is addicted to instant messaging. This facility, derived from the UNIX talk
program in use since around 1970, allows two people to type messages at each other in real time. A multiperson
version of this idea is the chat room, in which a group of people can type messages for all to see.

Worldwide newsgroups, with discussions on every conceivable topic, are already commonplace among a select
group of people, and this phenomenon will grow to include the population at large. These discussions, in which
one person posts a message and all the other subscribers to the newsgroup can read it, run the gamut from
humorous to impassioned. Unlike chat rooms, newsgroups are not real time and messages are saved so that
when someone comes back from vacation, all messages that have been posted in the meanwhile are patiently
waiting for reading.

Another type of person-to-person communication often goes by the name of peer-to-peer communication, to
distinguish it from the client-server model (Parameswaran et al., 2001). In this form, individuals who form a loose



group can communicate with others in the group, as shown in Fig. 1-3. Every person can, in principle,
communicate with one or more other people; there is no fixed division into clients and servers.

Figure 1-3. In a peer-to-peer system there are no fixed clients and servers.
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Peer-to-peer communication really hit the big time around 2000 with a service called Napster, which at its peak
had over 50 million music fans swapping music, in what was probably the biggest copyright infringement in all of
recorded history (Lam and Tan, 2001; and Macedonia, 2000). The idea was fairly simple. Members registered
the music they had on their hard disks in a central database maintained on the Napster server. If a member
wanted a song, he checked the database to see who had it and went directly there to get it. By not actually
keeping any music on its machines, Napster argued that it was not infringing anyone's copyright. The courts did
not agree and shut it down.

However, the next generation of peer-to-peer systems eliminates the central database by having each user
maintain his own database locally, as well as providing a list of other nearby people who are members of the
system. A new user can then go to any existing member to see what he has and get a list of other members to
inspect for more music and more names. This lookup process can be repeated indefinitely to build up a large
local database of what is out there. It is an activity that would get tedious for people but is one at which
computers excel.

Legal applications for peer-to-peer communication also exist. For example, fans sharing public domain music or
sample tracks that new bands have released for publicity purposes, families sharing photos, movies, and
genealogical information, and teenagers playing multiperson on-line games. In fact, one of the most popular
Internet applications of all, e-mail, is inherently peer-to-peer. This form of communication is expected to grow
considerably in the future.

Electronic crime is not restricted to copyright law. Another hot area is electronic gambling. Computers have been
simulating things for decades. Why not simulate slot machines, roulette wheels, blackjack dealers, and more
gambling equipment? Well, because it is illegal in a lot of places. The trouble is, gambling is legal in a lot of other
places (England, for example) and casino owners there have grasped the potential for Internet gambling. What
happens if the gambler and the casino are in different countries, with conflicting laws? Good question.

Other communication-oriented applications include using the Internet to carry telephone calls, video phone, and
Internet radio, three rapidly growing areas. Another application is telelearning, meaning attending 8 A.M. classes
without the inconvenience of having to get out of bed first. In the long run, the use of networks to enhance
human-to-human communication may prove more important than any of the others.

Our third category is entertainment, which is a huge and growing industry. The killer application here (the one
that may drive all the rest) is video on demand. A decade or so hence, it may be possible to select any movie or
television program ever made, in any country, and have it displayed on your screen instantly. New films may
become interactive, where the user is occasionally prompted for the story direction (should Macbeth murder
Duncan or just bide his time?) with alternative scenarios provided for all cases. Live television may also become
interactive, with the audience participating in quiz shows, choosing among contestants, and so on.



On the other hand, maybe the killer application will not be video on demand. Maybe it will be game playing.
Already we have multiperson real-time simulation games, like hide-and-seek in a virtual dungeon, and flight
simulators with the players on one team trying to shoot down the players on the opposing team. If games are
played with goggles and three-dimensional real-time, photographic-quality moving images, we have a kind of
worldwide shared virtual reality.

Our fourth category is electronic commerce in the broadest sense of the term. Home shopping is already popular
and enables users to inspect the on-line catalogs of thousands of companies. Some of these catalogs will soon
provide the ability to get an instant video on any product by just clicking on the product's name. After the
customer buys a product electronically but cannot figure out how to use it, on-line technical support may be
consulted.

Another area in which e-commerce is already happening is access to financial institutions. Many people already
pay their bills, manage their bank accounts, and handle their investments electronically. This will surely grow as
networks become more secure.

One area that virtually nobody foresaw is electronic flea markets (e-flea?). On-line auctions of second-hand
goods have become a massive industry. Unlike traditional e-commerce, which follows the client-server model,
on-line auctions are more of a peer-to-peer system, sort of consumer-to-consumer. Some of these forms of e-
commerce have acquired cute little tags based on the fact that "to" and "2" are pronounced the same. The most
popular ones are listed in Fig. 1-4.

Figure 1-4. Some forms of e-commerce.

Tag Full name | Example

B2C . Business-to-consumer . Ordering books on-line

B2B | Business-to-business Car manufacturer ordering tires from supplier
G2C | Government-to-consumer | Government distributing tax forms electronically
C2C | Consumer-to-consumer | Auclioning second-hand preducts on line

P2F  Peer-to-peer File sharing

No doubt the range of uses of computer networks will grow rapidly in the future, and probably in ways no one
can now foresee. After all, how many people in 1990 predicted that teenagers tediously typing short text
messages on mobile phones while riding buses would be an immense money maker for telephone companies in
10 years? But short message service is very profitable.

Computer networks may become hugely important to people who are geographically challenged, giving them the
same access to services as people living in the middle of a big city. Telelearning may radically affect education;
universities may go national or international. Telemedicine is only now starting to catch on (e.g., remote patient
monitoring) but may become much more important. But the killer application may be something mundane, like
using the webcam in your refrigerator to see if you have to buy milk on the way home from work.

1.1.3 Mobile Users

Mobile computers, such as notebook computers and personal digital assistants (PDAs), are one of the fastest-
growing segments of the computer industry. Many owners of these computers have desktop machines back at
the office and want to be connected to their home base even when away from home or en route. Since having a
wired connection is impossible in cars and airplanes, there is a lot of interest in wireless networks. In this section
we will briefly look at some of the uses of wireless networks.

Why would anyone want one? A common reason is the portable office. People on the road often want to use
their portable electronic equipment to send and receive telephone calls, faxes, and electronic mail, surf the Web,
access remote files, and log on to remote machines. And they want to do this from anywhere on land, sea, or air.
For example, at computer conferences these days, the organizers often set up a wireless network in the
conference area. Anyone with a notebook computer and a wireless modem can just turn the computer on and be
connected to the Internet, as though the computer were plugged into a wired network. Similarly, some



universities have installed wireless networks on campus so students can sit under the trees and consult the
library's card catalog or read their e-mail.

Wireless networks are of great value to fleets of trucks, taxis, delivery vehicles, and repairpersons for keeping in
contact with home. For example, in many cities, taxi drivers are independent businessmen, rather than being
employees of a taxi company. In some of these cities, the taxis have a display the driver can see. When a
customer calls up, a central dispatcher types in the pickup and destination points. This information is displayed
on the drivers' displays and a beep sounds. The first driver to hit a button on the display gets the call.

Wireless networks are also important to the military. If you have to be able to fight a war anywhere on earth on
short notice, counting on using the local networking infrastructure is probably not a good idea. It is better to bring
your own.

Although wireless networking and mobile computing are often related, they are not identical, as Fig. 1-5 shows.
Here we see a distinction between fixed wireless and mobile wireless. Even notebook computers are sometimes
wired. For example, if a traveler plugs a notebook computer into the telephone jack in a hotel room, he has
mobility without a wireless network.

Figure 1-5. Combinations of wireless networks and mobile computing.

Wireless = Mobile Applications

Mo Mo Deskiop computers in offices

Mo Yes A nofebock computer used in a hotel room
Yes Mo Matworks in older, unwired buildings

Yes Yes Portable office; PDA for store inventory

On the other hand, some wireless computers are not mobile. An important example is a company that owns an
older building lacking network cabling, and which wants to connect its computers. Installing a wireless network
may require little more than buying a small box with some electronics, unpacking it, and plugging it in. This
solution may be far cheaper than having workmen put in cable ducts to wire the building.

But of course, there are also the true mobile, wireless applications, ranging from the portable office to people
walking around a store with a PDA doing inventory. At many busy airports, car rental return clerks work in the
parking lot with wireless portable computers. They type in the license plate number of returning cars, and their
portable, which has a built-in printer, calls the main computer, gets the rental information, and prints out the bill
on the spot.

As wireless technology becomes more widespread, numerous other applications are likely to emerge. Let us
take a quick look at some of the possibilities. Wireless parking meters have advantages for both users and city
governments. The meters could accept credit or debit cards with instant verification over the wireless link. When
a meter expires, it could check for the presence of a car (by bouncing a signal off it) and report the expiration to
the police. It has been estimated that city governments in the U.S. alone could collect an additional $10 billion
this way (Harte et al., 2000). Furthermore, better parking enforcement would help the environment, as drivers
who knew their illegal parking was sure to be caught might use public transport instead.

Food, drink, and other vending machines are found everywhere. However, the food does not get into the
machines by magic. Periodically, someone comes by with a truck to fill them. If the vending machines issued a
wireless report once a day announcing their current inventories, the truck driver would know which machines
needed servicing and how much of which product to bring. This information could lead to more efficient route
planning. Of course, this information could be sent over a standard telephone line as well, but giving every
vending machine a fixed telephone connection for one call a day is expensive on account of the fixed monthly
charge.

Another area in which wireless could save money is utility meter reading. If electricity, gas, water, and other
meters in people's homes were to report usage over a wireless network, there would be no need to send out
meter readers. Similarly, wireless smoke detectors could call the fire department instead of making a big noise



(which has little value if no one is home). As the cost of both the radio devices and the air time drops, more and
more measurement and reporting will be done with wireless networks.

A whole different application area for wireless networks is the expected merger of cell phones and PDAs into tiny
wireless computers. A first attempt was tiny wireless PDAs that could display stripped-down Web pages on their
even tinier screens. This system, called WAP 1.0 (Wireless Application Protocol) failed, mostly due to the
microscopic screens, low bandwidth, and poor service. But newer devices and services will be better with WAP
2.0.

One area in which these devices may excel is called m-commerce (mobile-commerce) (Senn, 2000). The driving
force behind this phenomenon consists of an amalgam of wireless PDA manufacturers and network operators
who are trying hard to figure out how to get a piece of the e-commerce pie. One of their hopes is to use wireless
PDAs for banking and shopping. One idea is to use the wireless PDAs as a kind of electronic wallet, authorizing
payments in stores, as a replacement for cash and credit cards. The charge then appears on the mobile phone
bill. From the store's point of view, this scheme may save them most of the credit card company's fee, which can
be several percent. Of course, this plan may backfire, since customers in a store might use their PDAs to check
out competitors' prices before buying. Worse yet, telephone companies might offer PDAs with bar code readers
that allow a customer to scan a product in a store and then instantaneously get a detailed report on where else it
can be purchased and at what price.

Since the network operator knows where the user is, some services are intentionally location dependent. For
example, it may be possible to ask for a nearby bookstore or Chinese restaurant. Mobile maps are another
candidate. So are very local weather forecasts ("When is it going to stop raining in my backyard?"). No doubt
many other applications appear as these devices become more widespread.

One huge thing that m-commerce has going for it is that mobile phone users are accustomed to paying for
everything (in contrast to Internet users, who expect everything to be free). If an Internet Web site charged a fee
to allow its customers to pay by credit card, there would be an immense howling noise from the users. If a mobile
phone operator allowed people to pay for items in a store by using the phone and then tacked on a fee for this
convenience, it would probably be accepted as normal. Time will tell.

A little further out in time are personal area networks and wearable computers. IBM has developed a watch that
runs Linux (including the X11 windowing system) and has wireless connectivity to the Internet for sending and
receiving e-mail (Narayanaswami et al., 2002). In the future, people may exchange business cards just by
exposing their watches to each other. Wearable wireless computers may give people access to secure rooms
the same way magnetic stripe cards do now (possibly in combination with a PIN code or biometric
measurement). These watches may also be able to retrieve information relevant to the user's current location
(e.g., local restaurants). The possibilities are endless.

Smart watches with radios have been part of our mental space since their appearance in the Dick Tracy comic
strip in 1946. But smart dust? Researchers at Berkeley have packed a wireless computer into a cube 1 mm on
edge (Warneke et al., 2001). Potential applications include tracking inventory, packages, and even small birds,
rodents, and insects.

1.1.4 Social Issues

The widespread introduction of networking has introduced new social, ethical, and political problems. Let us just
briefly mention a few of them; a thorough study would require a full book, at least. A popular feature of many
networks are newsgroups or bulletin boards whereby people can exchange messages with like-minded
individuals. As long as the subjects are restricted to technical topics or hobbies like gardening, not too many
problems will arise.

The trouble comes when newsgroups are set up on topics that people actually care about, like politics, religion,
or sex. Views posted to such groups may be deeply offensive to some people. Worse yet, they may not be
politically correct. Furthermore, messages need not be limited to text. High-resolution color photographs and
even short video clips can now easily be transmitted over computer networks. Some people take a live-and-let-
live view, but others feel that posting certain material (e.g., attacks on particular countries or religions,



pornography, etc.) is simply unacceptable and must be censored. Different countries have different and
conflicting laws in this area. Thus, the debate rages.

People have sued network operators, claiming that they are responsible for the contents of what they carry, just
as newspapers and magazines are. The inevitable response is that a network is like a telephone company or the
post office and cannot be expected to police what its users say. Stronger yet, were network operators to censor
messages, they would likely delete everything containing even the slightest possibility of them being sued, and
thus violate their users' rights to free speech. It is probably safe to say that this debate will go on for a while.

Another fun area is employee rights versus employer rights. Many people read and write e-mail at work. Many
employers have claimed the right to read and possibly censor employee messages, including messages sent
from a home computer after work. Not all employees agree with this.

Even if employers have power over employees, does this relationship also govern universities and students?
How about high schools and students? In 1994, Carnegie-Mellon University decided to turn off the incoming
message stream for several newsgroups dealing with sex because the university felt the material was
inappropriate for minors (i.e., those few students under 18). The fallout from this event took years to settle.

Another key topic is government versus citizen. The FBI has installed a system at many Internet service
providers to snoop on all incoming and outgoing e-mail for nuggets of interest to it (Blaze and Bellovin, 2000;
Sobel, 2001; and Zacks, 2001). The system was originally called Carnivore but bad publicity caused it to be
renamed to the more innocent-sounding DCS1000. But its goal is still to spy on millions of people in the hope of
finding information about illegal activities. Unfortunately, the Fourth Amendment to the U.S. Constitution prohibits
government searches without a search warrant. Whether these 54 words, written in the 18th century, still carry
any weight in the 21st century is a matter that may keep the courts busy until the 22nd century.

The government does not have a monopoly on threatening people's privacy. The private sector does its bit too.
For example, small files called cookies that Web browsers store on users' computers allow companies to track
users' activities in cyberspace and also may allow credit card numbers, social security numbers, and other
confidential information to leak all over the Internet (Berghel, 2001).

Computer networks offer the potential for sending anonymous messages. In some situations, this capability may
be desirable. For example, it provides a way for students, soldiers, employees, and citizens to blow the whistle
on illegal behavior on the part of professors, officers, superiors, and politicians without fear of reprisals. On the
other hand, in the United States and most other democracies, the law specifically permits an accused person the
right to confront and challenge his accuser in court. Anonymous accusations cannot be used as evidence.

In short, computer networks, like the printing press 500 years ago, allow ordinary citizens to distribute their views
in different ways and to different audiences than were previously possible. This new-found freedom brings with it
many unsolved social, political, and moral issues.

Along with the good comes the bad. Life seems to be like that. The Internet makes it possible to find information
quickly, but a lot of it is ill-informed, misleading, or downright wrong. The medical advice you plucked from the
Internet may have come from a Nobel Prize winner or from a high school dropout. Computer networks have also
introduced new kinds of antisocial and criminal behavior. Electronic junk mail (spam) has become a part of life
because people have collected millions of e-mail addresses and sell them on CD-ROMs to would-be marketeers.
E-mail messages containing active content (basically programs or macros that execute on the receiver's
machine) can contain viruses that wreak havoc.

Identity theft is becoming a serious problem as thieves collect enough information about a victim to obtain get
credit cards and other documents in the victim's name. Finally, being able to transmit music and video digitally
has opened the door to massive copyright violations that are hard to catch and enforce.

A lot of these problems could be solved if the computer industry took computer security seriously. If all
messages were encrypted and authenticated, it would be harder to commit mischief. This technology is well
established and we will study it in detail in Chap. 8. The problem is that hardware and software vendors know
that putting in security features costs money and their customers are not demanding such features. In addition, a
substantial number of the problems are caused by buggy software, which occurs because vendors keep adding



more and more features to their programs, which inevitably means more code and thus more bugs. A tax on new
features might help, but that is probably a tough sell in some quarters. A refund for defective software might be
nice, except it would bankrupt the entire software industry in the first year.

1.2 Network Hardware

It is now time to turn our attention from the applications and social aspects of networking (the fun stuff) to the
technical issues involved in network design (the work stuff). There is no generally accepted taxonomy into which
all computer networks fit, but two dimensions stand out as important; transmission technology and scale. We will
now examine each of these in turn.

Broadly speaking, there are two types of transmission technology that are in widespread use. They are as
follows:

1. Broadcast links.
2. Point-to-point links.

Broadcast networks have a single communication channel that is shared by all the machines on the network.
Short messages, called packets in certain contexts, sent by any machine are received by all the others. An
address field within the packet specifies the intended recipient. Upon receiving a packet, a machine checks the
address field. If the packet is intended for the receiving machine, that machine processes the packet; if the
packet is intended for some other machine, it is just ignored.

As an analogy, consider someone standing at the end of a corridor with many rooms off it and shouting "Watson,
come here. | want you." Although the packet may actually be received (heard) by many people, only Watson
responds. The others just ignore it. Another analogy is an airport announcement asking all flight 644 passengers
to report to gate 12 for immediate boarding.

Broadcast systems generally also allow the possibility of addressing a packet to all destinations by using a
special code in the address field. When a packet with this code is transmitted, it is received and processed by
every machine on the network. This mode of operation is called broadcasting. Some broadcast systems also
support transmission to a subset of the machines, something known as multicasting. One possible scheme is to
reserve one bit to indicate multicasting. The remaining n - 1 address bits can hold a group number. Each
machine can "subscribe" to any or all of the groups. When a packet is sent to a certain group, it is delivered to all
machines subscribing to that group.

In contrast, point-to-point networks consist of many connections between individual pairs of machines. To go
from the source to the destination, a packet on this type of network may have to first visit one or more
intermediate machines. Often multiple routes, of different lengths, are possible, so finding good ones is important
in point-to-point networks. As a general rule (although there are many exceptions), smaller, geographically
localized networks tend to use broadcasting, whereas larger networks usually are point-to-point. Point-to-point
transmission with one sender and one receiver is sometimes called unicasting.

An alternative criterion for classifying networks is their scale. In Fig. 1-6 we classify multiple processor systems
by their physical size. At the top are the personal area networks, networks that are meant for one person. For
example, a wireless network connecting a computer with its mouse, keyboard, and printer is a personal area
network. Also, a PDA that controls the user's hearing aid or pacemaker fits in this category. Beyond the personal
area networks come longer-range networks. These can be divided into local, metropolitan, and wide area
networks. Finally, the connection of two or more networks is called an internetwork. The worldwide Internet is a
well-known example of an internetwork. Distance is important as a classification metric because different
techniques are used at different scales. In this book we will be concerned with networks at all these scales.
Below we give a brief introduction to network hardware.

Figure 1-6. Classification of interconnected processors by scale.
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1.2.1 Local Area Networks

Local area networks, generally called LANSs, are privately-owned networks within a single building or campus of
up to a few kilometers in size. They are widely used to connect personal computers and workstations in
company offices and factories to share resources (e.g., printers) and exchange information. LANs are
distinguished from other kinds of networks by three characteristics: (1) their size, (2) their transmission
technology, and (3) their topology.

LANs are restricted in size, which means that the worst-case transmission time is bounded and known in
advance. Knowing this bound makes it possible to use certain kinds of designs that would not otherwise be
possible. It also simplifies network management.

LANs may use a transmission technology consisting of a cable to which all the machines are attached, like the
telephone company party lines once used in rural areas. Traditional LANs run at speeds of 10 Mbps to 100
Mbps, have low delay (microseconds or nanoseconds), and make very few errors. Newer LANs operate at up to
10 Gbps. In this book, we will adhere to tradition and measure line speeds in megabits/sec (1 Mbps is 1,000,000
bits/sec) and gigabits/sec (1 Gbps is 1,000,000,000 bits/sec).

Various topologies are possible for broadcast LANs. Figure 1-7 shows two of them. In a bus (i.e., a linear cable)
network, at any instant at most one machine is the master and is allowed to transmit. All other machines are
required to refrain from sending. An arbitration mechanism is needed to resolve conflicts when two or more
machines want to transmit simultaneously. The arbitration mechanism may be centralized or distributed. IEEE
802.3, popularly called Ethernet, for example, is a bus-based broadcast network with decentralized control,
usually operating at 10 Mbps to 10 Gbps. Computers on an Ethernet can transmit whenever they want to; if two
or more packets collide, each computer just waits a random time and tries again later.

Figure 1-7. Two broadcast networks. (a) Bus. (b) Ring.
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A second type of broadcast system is the ring. In a ring, each bit propagates around on its own, not waiting for
the rest of the packet to which it belongs. Typically, each bit circumnavigates the entire ring in the time it takes to



transmit a few bits, often before the complete packet has even been transmitted. As with all other broadcast
systems, some rule is needed for arbitrating simultaneous accesses to the ring. Various methods, such as
having the machines take turns, are in use. IEEE 802.5 (the IBM token ring), is a ring-based LAN operating at 4
and 16 Mbps. FDDI is another example of a ring network.

Broadcast networks can be further divided into static and dynamic, depending on how the channel is allocated. A
typical static allocation would be to divide time into discrete intervals and use a round-robin algorithm, allowing
each machine to broadcast only when its time slot comes up. Static allocation wastes channel capacity when a
machine has nothing to say during its allocated slot, so most systems attempt to allocate the channel
dynamically (i.e., on demand).

Dynamic allocation methods for a common channel are either centralized or decentralized. In the centralized
channel allocation method, there is a single entity, for example, a bus arbitration unit, which determines who
goes next. It might do this by accepting requests and making a decision according to some internal algorithm. In
the decentralized channel allocation method, there is no central entity; each machine must decide for itself
whether to transmit. You might think that this always leads to chaos, but it does not. Later we will study many
algorithms designed to bring order out of the potential chaos.

1.2.2 Metropolitan Area Networks

A metropolitan area network, or MAN, covers a city. The best-known example of a MAN is the cable television
network available in many cities. This system grew from earlier community antenna systems used in areas with
poor over-the-air television reception. In these early systems, a large antenna was placed on top of a nearby hill
and signal was then piped to the subscribers' houses.

At first, these were locally-designed, ad hoc systems. Then companies began jumping into the business, getting
contracts from city governments to wire up an entire city. The next step was television programming and even
entire channels designed for cable only. Often these channels were highly specialized, such as all news, all
sports, all cooking, all gardening, and so on. But from their inception until the late 1990s, they were intended for
television reception only.

Starting when the Internet attracted a mass audience, the cable TV network operators began to realize that with
some changes to the system, they could provide two-way Internet service in unused parts of the spectrum. At
that point, the cable TV system began to morph from a way to distribute television to a metropolitan area
network. To a first approximation, a MAN might look something like the system shown in Fig. 1-8. In this figure
we see both television signals and Internet being fed into the centralized head end for subsequent distribution to
people's homes. We will come back to this subject in detail in Chap. 2.

Figure 1-8. A metropolitan area network based on cable TV.
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Cable television is not the only MAN. Recent developments in high-speed wireless Internet access resulted in
another MAN, which has been standardized as IEEE 802.16. We will look at this area in Chap. 2.

1.2.3 Wide Area Networks

A wide area network, or WAN, spans a large geographical area, often a country or continent. It contains a
collection of machines intended for running user (i.e., application) programs. We will follow traditional usage and
call these machines hosts. The hosts are connected by a communication subnet, or just subnet for short. The
hosts are owned by the customers (e.g., people's personal computers), whereas the communication subnet is
typically owned and operated by a telephone company or Internet service provider. The job of the subnet is to
carry messages from host to host, just as the telephone system carries words from speaker to listener.
Separation of the pure communication aspects of the network (the subnet) from the application aspects (the
hosts), greatly simplifies the complete network design.

In most wide area networks, the subnet consists of two distinct components: transmission lines and switching
elements. Transmission lines move bits between machines. They can be made of copper wire, optical fiber, or
even radio links. Switching elements are specialized computers that connect three or more transmission lines.
When data arrive on an incoming line, the switching element must choose an outgoing line on which to forward
them. These switching computers have been called by various names in the past; the name router is now most
commonly used. Unfortunately, some people pronounce it "rooter" and others have it rhyme with "doubter."
Determining the correct pronunciation will be left as an exercise for the reader. (Note: the perceived correct
answer may depend on where you live.)

In this model, shown in Fig. 1-9, each host is frequently connected to a LAN on which a router is present,
although in some cases a host can be connected directly to a router. The collection of communication lines and
routers (but not the hosts) form the subnet.

Figure 1-9. Relation between hosts on LANs and the subnet.
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A short comment about the term "subnet" is in order here. Originally, its only meaning was the collection of
routers and communication lines that moved packets from the source host to the destination host. However,
some years later, it also acquired a second meaning in conjunction with network addressing (which we will
discuss in Chap. 5). Unfortunately, no widely-used alternative exists for its initial meaning, so with some
hesitation we will use it in both senses. From the context, it will always be clear which is meant.

In most WANS, the network contains numerous transmission lines, each one connecting a pair of routers. If two
routers that do not share a transmission line wish to communicate, they must do this indirectly, via other routers.
When a packet is sent from one router to another via one or more intermediate routers, the packet is received at
each intermediate router in its entirety, stored there until the required output line is free, and then forwarded. A
subnet organized according to this principle is called a store-and-forward or packet-switched subnet. Nearly all
wide area networks (except those using satellites) have store-and-forward subnets. When the packets are small
and all the same size, they are often called cells.

The principle of a packet-switched WAN is so important that it is worth devoting a few more words to it.
Generally, when a process on some host has a message to be sent to a process on some other host, the
sending host first cuts the message into packets, each one bearing its number in the sequence. These packets



are then injected into the network one at a time in quick succession. The packets are transported individually
over the network and deposited at the receiving host, where they are reassembled into the original message and
delivered to the receiving process. A stream of packets resulting from some initial message is illustrated in Fig.
1-10.

Figure 1-10. A stream of packets from sender to receiver.
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In this figure, all the packets follow the route ACE, rather than ABDE or ACDE. In some networks all packets
from a given message must follow the same route; in others each packet is routed separately. Of course, if ACE
is the best route, all packets may be sent along it, even if each packet is individually routed.

Routing decisions are made locally. When a packet arrives at router A,itis up to A to decide if this packet should
be sent on the line to B or the line to C. How A makes that decision is called the routing algorithm. Many of them
exist. We will study some of them in detail in Chap. 5.

Not all WANs are packet switched. A second possibility for a WAN is a satellite system. Each router has an
antenna through which it can send and receive. All routers can hear the output from the satellite, and in some
cases they can also hear the upward transmissions of their fellow routers to the satellite as well. Sometimes the
routers are connected to a substantial point-to-point subnet, with only some of them having a satellite antenna.
Satellite networks are inherently broadcast and are most useful when the broadcast property is important.

1.2.4 Wireless Networks

Digital wireless communication is not a new idea. As early as 1901, the Italian physicist Guglielmo Marconi
demonstrated a ship-to-shore wireless telegraph, using Morse Code (dots and dashes are binary, after all).
Modern digital wireless systems have better performance, but the basic idea is the same.

To a first approximation, wireless networks can be divided into three main categories:

1. System interconnection.
2. Wireless LANs.
3. Wireless WANS.

System interconnection is all about interconnecting the components of a computer using short-range radio.
Almost every computer has a monitor, keyboard, mouse, and printer connected to the main unit by cables. So
many new users have a hard time plugging all the cables into the right little holes (even though they are usually
color coded) that most computer vendors offer the option of sending a technician to the user's home to do it.
Consequently, some companies got together to design a short-range wireless network called Bluetooth to
connect these components without wires. Bluetooth also allows digital cameras, headsets, scanners, and other
devices to connect to a computer by merely being brought within range. No cables, no driver installation, just put
them down, turn them on, and they work. For many people, this ease of operation is a big plus.

In the simplest form, system interconnection networks use the master-slave paradigm of Fig. 1-11(a). The
system unit is normally the master, talking to the mouse, keyboard, etc., as slaves. The master tells the slaves
what addresses to use, when they can broadcast, how long they can transmit, what frequencies they can use,
and so on. We will discuss Bluetooth in more detail in Chap. 4.



Figure 1-11. (a) Bluetooth configuration. (b) Wireless LAN.
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The next step up in wireless networking are the wireless LANs. These are systems in which every computer has
a radio modem and antenna with which it can communicate with other systems. Often there is an antenna on the
ceiling that the machines talk to, as shown in Fig. 1-11(b). However, if the systems are close enough, they can
communicate directly with one another in a peer-to-peer configuration. Wireless LANs are becoming increasingly
common in small offices and homes, where installing Ethernet is considered too much trouble, as well as in older
office buildings, company cafeterias, conference rooms, and other places. There is a standard for wireless LANSs,
called IEEE 802.11, which most systems implement and which is becoming very widespread. We will discuss it

in Chap. 4.

The third kind of wireless network is used in wide area systems. The radio network used for cellular telephones
is an example of a low-bandwidth wireless system. This system has already gone through three generations.
The first generation was analog and for voice only. The second generation was digital and for voice only. The
third generation is digital and is for both voice and data. In a certain sense, cellular wireless networks are like
wireless LANs, except that the distances involved are much greater and the bit rates much lower. Wireless LANs
can operate at rates up to about 50 Mbps over distances of tens of meters. Cellular systems operate below 1
Mbps, but the distance between the base station and the computer or telephone is measured in kilometers
rather than in meters. We will have a lot to say about these networks in Chap. 2.

In addition to these low-speed networks, high-bandwidth wide area wireless networks are also being developed.
The initial focus is high-speed wireless Internet access from homes and businesses, bypassing the telephone
system. This service is often called local multipoint distribution service. We will study it later in the book. A
standard for it, called IEEE 802.16, has also been developed. We will examine the standard in Chap. 4.

Almost all wireless networks hook up to the wired network at some point to provide access to files, databases,
and the Internet. There are many ways these connections can be realized, depending on the circumstances. For
example, in Fig. 1-12(a), we depict an airplane with a number of people using modems and seat-back
telephones to call the office. Each call is independent of the other ones. A much more efficient option, however,
is the flying LAN of Fig. 1-12(b). Here each seat comes equipped with an Ethernet connector into which
passengers can plug their computers. A single router on the aircraft maintains a radio link with some router on
the ground, changing routers as it flies along. This configuration is just a traditional LAN, except that its
connection to the outside world happens to be a radio link instead of a hardwired line.

Figure 1-12. (a) Individual mobile computers. (b) A flying LAN.
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Many people believe wireless is the wave of the future (e.g., Bi et al., 2001; Leeper, 2001; Varshey and Vetter,
2000) but at least one dissenting voice has been heard. Bob Metcalfe, the inventor of Ethernet, has written:
"Mobile wireless computers are like mobile pipeless bathrooms—portapotties. They will be common on vehicles,
and at construction sites, and rock concerts. My advice is to wire up your home and stay there" (Metcalfe, 1995).
History may record this remark in the same category as IBM's chairman T.J. Watson's 1945 explanation of why
IBM was not getting into the computer business: "Four or five computers should be enough for the entire world
until the year 2000."

1.2.5 Home Networks

Home networking is on the horizon. The fundamental idea is that in the future most homes will be set up for
networking. Every device in the home will be capable of communicating with every other device, and all of them
will be accessible over the Internet. This is one of those visionary concepts that nobody asked for (like TV
remote controls or mobile phones), but once they arrived nobody can imagine how they lived without them.

Many devices are capable of being networked. Some of the more obvious categories (with examples) are as
follows:

Computers (desktop PC, notebook PC, PDA, shared peripherals).
Entertainment (TV, DVD, VCR, camcorder, camera, stereo, MP3).
Telecommunications (telephone, mobile telephone, intercom, fax).
Appliances (microwave, refrigerator, clock, furnace, airco, lights).
Telemetry (utility meter, smoke/burglar alarm, thermostat, babycam).
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Home computer networking is already here in a limited way. Many homes already have a device to connect
multiple computers to a fast Internet connection. Networked entertainment is not quite here, but as more and
more music and movies can be downloaded from the Internet, there will be a demand to connect stereos and
televisions to it. Also, people will want to share their own videos with friends and family, so the connection will
need to go both ways. Telecommunications gear is already connected to the outside world, but soon it will be
digital and go over the Internet. The average home probably has a dozen clocks (e.g., in appliances), all of
which have to be reset twice a year when daylight saving time (summer time) comes and goes. If all the clocks
were on the Internet, that resetting could be done automatically. Finally, remote monitoring of the home and its
contents is a likely winner. Probably many parents would be willing to spend some money to monitor their
sleeping babies on their PDAs when they are eating out, even with a rented teenager in the house. While one
can imagine a separate network for each application area, integrating all of them into a single network is
probably a better idea.

Home networking has some fundamentally different properties than other network types. First, the network and
devices have to be easy to install. The author has installed numerous pieces of hardware and software on
various computers over the years, with mixed results. A series of phone calls to the vendor's helpdesk typically
resulted in answers like (1) Read the manual, (2) Reboot the computer, (3) Remove all hardware and software
except ours and try again, (4) Download the newest driver from our Web site, and if all else fails, (5) Reformat
the hard disk and then reinstall Windows from the CD-ROM. Telling the purchaser of an Internet refrigerator to
download and install a new version of the refrigerator's operating system is not going to lead to happy
customers. Computer users are accustomed to putting up with products that do not work; the car-, television-,
and refrigerator-buying public is far less tolerant. They expect products to work for 100% from the word go.



Second, the network and devices have to be foolproof in operation. Air conditioners used to have one knob with
four settings: OFF, LOW, MEDIUM, and HIGH. Now they have 30-page manuals. Once they are networked,
expect the chapter on security alone to be 30 pages. This will be beyond the comprehension of virtually all the
users.

Third, low price is essential for success. People will not pay a $50 premium for an Internet thermostat because
few people regard monitoring their home temperature from work that important. For $5 extra, it might sell,
though.

Fourth, the main application is likely to involve multimedia, so the network needs sufficient capacity. There is no
market for Internet-connected televisions that show shaky movies at 320 x 240 pixel resolution and 10
frames/sec. Fast Ethernet, the workhorse in most offices, is not good enough for multimedia. Consequently,
home networks will need better performance than that of existing office networks and at lower prices before they
become mass market items.

Fifth, it must be possible to start out with one or two devices and expand the reach of the network gradually. This
means no format wars. Telling consumers to buy peripherals with IEEE 1394 (FireWire) interfaces and a few
years later retracting that and saying USB 2.0 is the interface-of-the-month is going to make consumers skittish.
The network interface will have to remain stable for many years; the wiring (if any) will have to remain stable for
decades.

Sixth, security and reliability will be very important. Losing a few files to an e-mail virus is one thing; having a
burglar disarm your security system from his PDA and then plunder your house is something quite different.

An interesting question is whether home networks will be wired or wireless. Most homes already have six
networks installed: electricity, telephone, cable television, water, gas, and sewer. Adding a seventh one during
construction is not difficult, but retrofitting existing houses is expensive. Cost favors wireless networking, but
security favors wired networking. The problem with wireless is that the radio waves they use are quite good at
going through fences. Not everyone is overjoyed at the thought of having the neighbors piggybacking on their
Internet connection and reading their e-mail on its way to the printer. In Chap. 8 we will study how encryption
can be used to provide security, but in the context of a home network, security has to be foolproof, even with
inexperienced users. This is easier said than done, even with highly sophisticated users.

In short, home networking offers many opportunities and challenges. Most of them relate to the need to be easy
to manage, dependable, and secure, especially in the hands of nontechnical users, while at the same time
delivering high performance at low cost.

1.2.6 Internetworks

Many networks exist in the world, often with different hardware and software. People connected to one network
often want to communicate with people attached to a different one. The fulfillment of this desire requires that
different, and frequently incompatible networks, be connected, sometimes by means of machines called
gateways to make the connection and provide the necessary translation, both in terms of hardware and
software. A collection of interconnected networks is called an internetwork or internet. These terms will be used
in a generic sense, in contrast to the worldwide Internet (which is one specific internet), which we will always
capitalize.

A common form of internet is a collection of LANs connected by a WAN. In fact, if we were to replace the label
"subnet" in Fig. 1-9 by "WAN," nothing else in the figure would have to change. The only real technical
distinction between a subnet and a WAN in this case is whether hosts are present. If the system within the gray
area contains only routers, it is a subnet; if it contains both routers and hosts, it is a WAN. The real differences
relate to ownership and use.

Subnets, networks, and internetworks are often confused. Subnet makes the most sense in the context of a wide
area network, where it refers to the collection of routers and communication lines owned by the network
operator. As an analogy, the telephone system consists of telephone switching offices connected to one another
by high-speed lines, and to houses and businesses by low-speed lines. These lines and equipment, owned and
managed by the telephone company, form the subnet of the telephone system. The telephones themselves (the



hosts in this analogy) are not part of the subnet. The combination of a subnet and its hosts forms a network. In
the case of a LAN, the cable and the hosts form the network. There really is no subnet.

An internetwork is formed when distinct networks are interconnected. In our view, connecting a LAN and a WAN
or connecting two LANs forms an internetwork, but there is little agreement in the industry over terminology in
this area. One rule of thumb is that if different organizations paid to construct different parts of the network and
each maintains its part, we have an internetwork rather than a single network. Also, if the underlying technology
is different in different parts (e.g., broadcast versus point-to-point), we probably have two networks.

1.3 Network Software

The first computer networks were designed with the hardware as the main concern and the software as an
afterthought. This strategy no longer works. Network software is now highly structured. In the following sections
we examine the software structuring technique in some detail. The method described here forms the keystone of
the entire book and will occur repeatedly later on.

1.3.1 Protocol Hierarchies

To reduce their design complexity, most networks are organized as a stack of layers or levels, each one built
upon the one below it. The number of layers, the name of each layer, the contents of each layer, and the
function of each layer differ from network to network. The purpose of each layer is to offer certain services to the
higher layers, shielding those layers from the details of how the offered services are actually implemented. In a
sense, each layer is a kind of virtual machine, offering certain services to the layer above it.

This concept is actually a familiar one and used throughout computer science, where it is variously known as
information hiding, abstract data types, data encapsulation, and object-oriented programming. The fundamental
idea is that a particular piece of software (or hardware) provides a service to its users but keeps the details of its
internal state and algorithms hidden from them.

Layer n on one machine carries on a conversation with layer n on another machine. The rules and conventions
used in this conversation are collectively known as the layer n protocol. Basically, a protocol is an agreement
between the communicating parties on how communication is to proceed. As an analogy, when a woman is
introduced to a man, she may choose to stick out her hand. He, in turn, may decide either to shake it or kiss it,
depending, for example, on whether she is an American lawyer at a business meeting or a European princess at
a formal ball. Violating the protocol will make communication more difficult, if not completely impossible.

A five-layer network is illustrated in Fig. 1-13. The entities comprising the corresponding layers on different
machines are called peers. The peers may be processes, hardware devices, or even human beings. In other
words, it is the peers that communicate by using the protocol.

Figure 1-13. Layers, protocols, and interfaces.
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In reality, no data are directly transferred from layer n on one machine to layer n on another machine. Instead,
each layer passes data and control information to the layer immediately below it, until the lowest layer is
reached. Below layer 1 is the physical medium through which actual communication occurs. In Fig. 1-13, virtual
communication is shown by dotted lines and physical communication by solid lines.

Between each pair of adjacent layers is an interface. The interface defines which primitive operations and
services the lower layer makes available to the upper one. When network designers decide how many layers to
include in a network and what each one should do, one of the most important considerations is defining clean
interfaces between the layers. Doing so, in turn, requires that each layer perform a specific collection of well-
understood functions. In addition to minimizing the amount of information that must be passed between layers,
clear-cut interfaces also make it simpler to replace the implementation of one layer with a completely different
implementation (e.g., all the telephone lines are replaced by satellite channels) because all that is required of the
new implementation is that it offer exactly the same set of services to its upstairs neighbor as the old
implementation did. In fact, it is common that different hosts use different implementations.

A set of layers and protocols is called a network architecture. The specification of an architecture must contain
enough information to allow an implementer to write the program or build the hardware for each layer so that it
will correctly obey the appropriate protocol. Neither the details of the implementation nor the specification of the
interfaces is part of the architecture because these are hidden away inside the machines and not visible from the
outside. It is not even necessary that the interfaces on all machines in a network be the same, provided that
each machine can correctly use all the protocols. A list of protocols used by a certain system, one protocol per
layer, is called a protocol stack. The subjects of network architectures, protocol stacks, and the protocols
themselves are the principal topics of this book.

An analogy may help explain the idea of multilayer communication. Imagine two philosophers (peer processes in
layer 3), one of whom speaks Urdu and English and one of whom speaks Chinese and French. Since they have
no common language, they each engage a translator (peer processes at layer 2), each of whom in turn contacts
a secretary (peer processes in layer 1). Philosopher 1 wishes to convey his affection for oryctolagus cuniculus to
his peer. To do so, he passes a message (in English) across the 2/3 interface to his translator, saying "l like
rabbits,” as illustrated in Fig. 1-14. The translators have agreed on a neutral language known to both of them,
Dutch, so the message is converted to "lk vind konijnen leuk."” The choice of language is the layer 2 protocol and
is up to the layer 2 peer processes.

Figure 1-14. The philosopher-translator-secretary architecture.
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The translator then gives the message to a secretary for transmission, by, for example, fax (the layer 1 protocol).
When the message arrives, it is translated into French and passed across the 2/3 interface to philosopher 2.
Note that each protocol is completely independent of the other ones as long as the interfaces are not changed.
The translators can switch from Dutch to say, Finnish, at will, provided that they both agree, and neither changes
his interface with either layer 1 or layer 3. Similarly, the secretaries can switch from fax to e-mail or telephone
without disturbing (or even informing) the other layers. Each process may add some information intended only
for its peer. This information is not passed upward to the layer above.

Now consider a more technical example: how to provide communication to the top layer of the five-layer network
in Fig. 1-15. A message, M, is produced by an application process running in layer 5 and given to layer 4 for
transmission. Layer 4 puts a header in front of the message to identify the message and passes the result to
layer 3. The header includes control information, such as sequence numbers, to allow layer 4 on the destination
machine to deliver messages in the right order if the lower layers do not maintain sequence. In some layers,
headers can also contain sizes, times, and other control fields.

Figure 1-15. Example information flow supporting virtual communication in layer 5.
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In many networks, there is no limit to the size of messages transmitted in the layer 4 protocol, but there is nearly
always a limit imposed by the layer 3 protocol. Consequently, layer 3 must break up the incoming messages into
smaller units, packets, prepending a layer 3 header to each packet. In this example, M is split into two parts, M;
and M.

Layer 3 decides which of the outgoing lines to use and passes the packets to layer 2. Layer 2 adds not only a
header to each piece, but also a trailer, and gives the resulting unit to layer 1 for physical transmission. At the
receiving machine the message moves upward, from layer to layer, with headers being stripped off as it
progresses. None of the headers for layers below n are passed up to layer n.

The important thing to understand about Fig. 1-15 is the relation between the virtual and actual communication
and the difference between protocols and interfaces. The peer processes in layer 4, for example, conceptually
think of their communication as being "horizontal," using the layer 4 protocol. Each one is likely to have a
procedure called something like SendToOtherSide and GetFromOtherSide, even though these procedures
actually communicate with lower layers across the 3/4 interface, not with the other side.

The peer process abstraction is crucial to all network design. Using it, the unmanageable task of designing the
complete network can be broken into several smaller, manageable design problems, namely, the design of the
individual layers.

Although Sec. 1.3 is called "Network 1.3," it is worth pointing out that the lower layers of a protocol hierarchy are
frequently implemented in hardware or firmware. Nevertheless, complex protocol algorithms are involved, even if
they are embedded (in whole or in part) in hardware.

1.3.2 Design Issues for the Layers

Some of the key design issues that occur in computer networks are present in several layers. Below, we will
briefly mention some of the more important ones.

Every layer needs a mechanism for identifying senders and receivers. Since a network normally has many
computers, some of which have multiple processes, a means is needed for a process on one machine to specify
with whom it wants to talk. As a consequence of having multiple destinations, some form of addressing is
needed in order to specify a specific destination.

Another set of design decisions concerns the rules for data transfer. In some systems, data only travel in one
direction; in others, data can go both ways. The protocol must also determine how many logical channels the



connection corresponds to and what their priorities are. Many networks provide at least two logical channels per
connection, one for normal data and one for urgent data.

Error control is an important issue because physical communication circuits are not perfect. Many error-detecting
and error-correcting codes are known, but both ends of the connection must agree on which one is being used.
In addition, the receiver must have some way of telling the sender which messages have been correctly received
and which have not.

Not all communication channels preserve the order of messages sent on them. To deal with a possible loss of
sequencing, the protocol must make explicit provision for the receiver to allow the pieces to be reassembled
properly. An obvious solution is to number the pieces, but this solution still leaves open the question of what
should be done with pieces that arrive out of order.

An issue that occurs at every level is how to keep a fast sender from swamping a slow receiver with data.
Various solutions have been proposed and will be discussed later. Some of them involve some kind of feedback
from the receiver to the sender, either directly or indirectly, about the receiver's current situation. Others limit the
sender to an agreed-on transmission rate. This subject is called flow control.

Another problem that must be solved at several levels is the inability of all processes to accept arbitrarily long
messages. This property leads to mechanisms for disassembling, transmitting, and then reassembling
messages. A related issue is the problem of what to do when processes insist on transmitting data in units that
are so small that sending each one separately is inefficient. Here the solution is to gather several small
messages heading toward a common destination into a single large message and dismember the large
message at the other side.

When it is inconvenient or expensive to set up a separate connection for each pair of communicating processes,
the underlying layer may decide to use the same connection for multiple, unrelated conversations. As long as
this multiplexing and demultiplexing is done transparently, it can be used by any layer. Multiplexing is needed in
the physical layer, for example, where all the traffic for all connections has to be sent over at most a few physical
circuits.

When there are multiple paths between source and destination, a route must be chosen. Sometimes this
decision must be split over two or more layers. For example, to send data from London to Rome, a high-level
decision might have to be made to transit France or Germany based on their respective privacy laws. Then a
low-level decision might have to made to select one of the available circuits based on the current traffic load.
This topic is called routing.

1.3.3 Connection-Oriented and Connectionless Services

Layers can offer two different types of service to the layers above them: connection-oriented and connectionless.
In this section we will look at these two types and examine the differences between them.

Connection-oriented service is modeled after the telephone system. To talk to someone, you pick up the phone,
dial the number, talk, and then hang up. Similarly, to use a connection-oriented network service, the service user
first establishes a connection, uses the connection, and then releases the connection. The essential aspect of a
connection is that it acts like a tube: the sender pushes objects (bits) in at one end, and the receiver takes them
out at the other end. In most cases the order is preserved so that the bits arrive in the order they were sent.

In some cases when a connection is established, the sender, receiver, and subnet conduct a negotiation about
parameters to be used, such as maximum message size, quality of service required, and other issues. Typically,
one side makes a proposal and the other side can accept it, reject it, or make a counterproposal.

In contrast, connectionless service is modeled after the postal system. Each message (letter) carries the full
destination address, and each one is routed through the system independent of all the others. Normally, when
two messages are sent to the same destination, the first one sent will be the first one to arrive. However, it is
possible that the first one sent can be delayed so that the second one arrives first.



Each service can be characterized by a quality of service. Some services are reliable in the sense that they
never lose data. Usually, a reliable service is implemented by having the receiver acknowledge the receipt of
each message so the sender is sure that it arrived. The acknowledgement process introduces overhead and
delays, which are often worth it but are sometimes undesirable.

A typical situation in which a reliable connection-oriented service is appropriate is file transfer. The owner of the
file wants to be sure that all the bits arrive correctly and in the same order they were sent. Very few file transfer
customers would prefer a service that occasionally scrambles or loses a few bits, even if it is much faster.

Reliable connection-oriented service has two minor variations: message sequences and byte streams. In the
former variant, the message boundaries are preserved. When two 1024-byte messages are sent, they arrive as
two distinct 1024-byte messages, never as one 2048-byte message. In the latter, the connection is simply a
stream of bytes, with no message boundaries. When 2048 bytes arrive at the receiver, there is no way to tell if
they were sent as one 2048-byte message, two 1024-byte messages, or 2048 1-byte messages. If the pages of
a book are sent over a network to a phototypesetter as separate messages, it might be important to preserve the
message boundaries. On the other hand, when a user logs into a remote server, a byte stream from the user's
computer to the server is all that is needed. Message boundaries are not relevant.

As mentioned above, for some applications, the transit delays introduced by acknowledgements are
unacceptable. One such application is digitized voice traffic. It is preferable for telephone users to hear a bit of
noise on the line from time to time than to experience a delay waiting for acknowledgements. Similarly, when
transmitting a video conference, having a few pixels wrong is no problem, but having the image jerk along as the
flow stops to correct errors is irritating.

Not all applications require connections. For example, as electronic mail becomes more common, electronic junk
is becoming more common too. The electronic junk-mail sender probably does not want to go to the trouble of
setting up and later tearing down a connection just to send one item. Nor is 100 percent reliable delivery
essential, especially if it costs more. All that is needed is a way to send a single message that has a high
probability of arrival, but no guarantee. Unreliable (meaning not acknowledged) connectionless service is often
called datagram service, in analogy with telegram service, which also does not return an acknowledgement to
the sender.

In other situations, the convenience of not having to establish a connection to send one short message is
desired, but reliability is essential. The acknowledged datagram service can be provided for these applications. It
is like sending a registered letter and requesting a return receipt. When the receipt comes back, the sender is
absolutely sure that the letter was delivered to the intended party and not lost along the way.

Still another service is the request-reply service. In this service the sender transmits a single datagram
containing a request; the reply contains the answer. For example, a query to the local library asking where
Uighur is spoken falls into this category. Request-reply is commonly used to implement communication in the
client-server model: the client issues a request and the server responds to it. Figure 1-16 summarizes the types
of services discussed above.

Figure 1-16. Six different types of service.
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The concept of using unreliable communication may be confusing at first. After all, why would anyone actually
prefer unreliable communication to reliable communication? First of all, reliable communication (in our sense,
that is, acknowledged) may not be available. For example, Ethernet does not provide reliable communication.
Packets can occasionally be damaged in transit. It is up to higher protocol levels to deal with this problem.
Second, the delays inherent in providing a reliable service may be unacceptable, especially in real-time
applications such as multimedia. For these reasons, both reliable and unreliable communication coexist.

1.3.4 Service Primitives

A service is formally specified by a set of primitives (operations) available to a user process to access the
service. These primitives tell the service to perform some action or report on an action taken by a peer entity. If
the protocol stack is located in the operating system, as it often is, the primitives are normally system calls.
These calls cause a trap to kernel mode, which then turns control of the machine over to the operating system to
send the necessary packets.

The set of primitives available depends on the nature of the service being provided. The primitives for
connection-oriented service are different from those of connectionless service. As a minimal example of the
service primitives that might be provided to implement a reliable byte stream in a client-server environment,
consider the primitives listed in Fig. 1-17.

Figure 1-17. Five service primitives for implementing a simple connection-oriented service.

Primitive Meaning
LISTEM - Block waiting for an incoming connection
COMNECT | Establish a connection with a waiting peer
RECEIVE Elock waiting for an incoming message
SEND . Send a message to the peer
DISCONMECT | Terminate a connection

These primitives might be used as follows. First, the server executes LISTEN to indicate that it is prepared to
accept incoming connections. A common way to implement LISTEN is to make it a blocking system call. After
executing the primitive, the server process is blocked until a request for connection appears.

Next, the client process executes CONNECT to establish a connection with the server. The CONNECT call
needs to specify who to connect to, so it might have a parameter giving the server's address. The operating
system then typically sends a packet to the peer asking it to connect, as shown by (1) in Fig. 1-18. The client
process is suspended until there is a response. When the packet arrives at the server, it is processed by the
operating system there. When the system sees that the packet is requesting a connection, it checks to see if
there is a listener. If so, it does two things: unblocks the listener and sends back an acknowledgement (2). The
arrival of this acknowledgement then releases the client. At this point the client and server are both running and
they have a connection established. It is important to note that the acknowledgement (2) is generated by the
protocol code itself, not in response to a user-level primitive. If a connection request arrives and there is no
listener, the result is undefined. In some systems the packet may be queued for a short time in anticipation of a
LISTEN.

Figure 1-18. Packets sent in a simple client-server interaction on a connection-oriented network.
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The obvious analogy between this protocol and real life is a customer (client) calling a company's customer
service manager. The service manager starts out by being near the telephone in case it rings. Then the client
places the call. When the manager picks up the phone, the connection is established.

The next step is for the server to execute RECEIVE to prepare to accept the first request. Normally, the server
does this immediately upon being released from the LISTEN, before the acknowledgement can get back to the
client. The RECEIVE call blocks the server.

Then the client executes SEND to transmit its request (3) followed by the execution of RECEIVE to get the reply.

The arrival of the request packet at the server machine unblocks the server process so it can process the
request. After it has done the work, it uses SEND to return the answer to the client (4). The arrival of this packet
unblocks the client, which can now inspect the answer. If the client has additional requests, it can make them
now. If it is done, it can use DISCONNECT to terminate the connection. Usually, an initial DISCONNECT is a
blocking call, suspending the client and sending a packet to the server saying that the connection is no longer
needed (5). When the server gets the packet, it also issues a DISCONNECT of its own, acknowledging the client
and releasing the connection. When the server's packet (6) gets back to the client machine, the client process is
released and the connection is broken. In a nutshell, this is how connection-oriented communication works.

Of course, life is not so simple. Many things can go wrong here. The timing can be wrong (e.g., the CONNECT is
done before the LISTEN), packets can get lost, and much more. We will look at these issues in great detail later,
but for the moment, Fig. 1-18 briefly summarizes how client-server communication might work over a
connection-oriented network.

Given that six packets are required to complete this protocol, one might wonder why a connectionless protocol is
not used instead. The answer is that in a perfect world it could be, in which case only two packets would be
needed: one for the request and one for the reply. However, in the face of large messages in either direction
(e.g., a megabyte file), transmission errors, and lost packets, the situation changes. If the reply consisted of
hundreds of packets, some of which could be lost during transmission, how would the client know if some pieces
were missing? How would the client know whether the last packet actually received was really the last packet
sent? Suppose that the client wanted a second file. How could it tell packet 1 from the second file from a lost
packet 1 from the first file that suddenly found its way to the client? In short, in the real world, a simple request-
reply protocol over an unreliable network is often inadequate. In Chap. 3 we will study a variety of protocols in
detail that overcome these and other problems. For the moment, suffice it to say that having a reliable, ordered
byte stream between processes is sometimes very convenient.

1.3.5 The Relationship of Services to Protocols

Services and protocols are distinct concepts, although they are frequently confused. This distinction is so
important, however, that we emphasize it again here. A service is a set of primitives (operations) that a layer
provides to the layer above it. The service defines what operations the layer is prepared to perform on behalf of
its users, but it says nothing at all about how these operations are implemented. A service relates to an interface
between two layers, with the lower layer being the service provider and the upper layer being the service user.

A protocol, in contrast, is a set of rules governing the format and meaning of the packets, or messages that are
exchanged by the peer entities within a layer. Entities use protocols to implement their service definitions. They
are free to change their protocols at will, provided they do not change the service visible to their users. In this
way, the service and the protocol are completely decoupled.

In other words, services relate to the interfaces between layers, as illustrated in Fig. 1-19. In contrast, protocols
relate to the packets sent between peer entities on different machines. It is important not to confuse the two
concepts.

Figure 1-19. The relationship between a service and a protocol.
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An analogy with programming languages is worth making. A service is like an abstract data type or an object in
an object-oriented language. It defines operations that can be performed on an object but does not specify how
these operations are implemented. A protocol relates to the implementation of the service and as such is not
visible to the user of the service.

Many older protocols did not distinguish the service from the protocol. In effect, a typical layer might have had a
service primitive SEND PACKET with the user providing a pointer to a fully assembled packet. This arrangement
meant that all changes to the protocol were immediately visible to the users. Most network designers now regard
such a design as a serious blunder.



1.4 Reference Models

Now that we have discussed layered networks in the abstract, it is time to look at some examples. In the next
two sections we will discuss two important network architectures, the OSI reference model and the TCP/IP
reference model. Although the protocols associated with the OSI model are rarely used any more, the model
itself is actually quite general and still valid, and the features discussed at each layer are still very important. The
TCP/IP model has the opposite properties: the model itself is not of much use but the protocols are widely used.
For this reason we will look at both of them in detail. Also, sometimes you can learn more from failures than from
successes.

1.4.1 The OSI Reference Model

The OSI model (minus the physical medium) is shown in Fig. 1-20. This model is based on a proposal developed
by the International Standards Organization (ISO) as a first step toward international standardization of the
protocols used in the various layers (Day and Zimmermann, 1983). It was revised in 1995 (Day, 1995). The
model is called the ISO OSI (Open Systems Interconnection) Reference Model because it deals with connecting
open systems—that is, systems that are open for communication with other systems. We will just call it the OSI
model for short.

Figure 1-20. The OSI reference model.
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The OSI model has seven layers. The principles that were applied to arrive at the seven layers can be briefly
summarized as follows:

1. Alayer should be created where a different abstraction is needed.
2. Each layer should perform a well-defined function.
3. The function of each layer should be chosen with an eye toward defining internationally standardized



protocols.

4. The layer boundaries should be chosen to minimize the information flow across the interfaces.

5. The number of layers should be large enough that distinct functions need not be thrown together in the
same layer out of necessity and small enough that the architecture does not become unwieldy.

Below we will discuss each layer of the model in turn, starting at the bottom layer. Note that the OSI model itself
is not a network architecture because it does not specify the exact services and protocols to be used in each
layer. It just tells what each layer should do. However, 1SO has also produced standards for all the layers,
although these are not part of the reference model itself. Each one has been published as a separate
international standard.

The Physical Layer

The physical layer is concerned with transmitting raw bits over a communication channel. The design issues
have to do with making sure that when one side sends a 1 bit, it is received by the other side as a 1 bit, not as a
0 bit. Typical questions here are how many volts should be used to represent a 1 and how many for a 0, how
many nanoseconds a bit lasts, whether transmission may proceed simultaneously in both directions, how the
initial connection is established and how it is torn down when both sides are finished, and how many pins the
network connector has and what each pin is used for. The design issues here largely deal with mechanical,
electrical, and timing interfaces, and the physical transmission medium, which lies below the physical layer.

The Data Link Layer

The main task of the data link layer is to transform a raw transmission facility into a line that appears free of
undetected transmission errors to the network layer. It accomplishes this task by having the sender break up the
input data into data frames (typically a few hundred or a few thousand bytes) and transmit the frames
sequentially. If the service is reliable, the receiver confirms correct receipt of each frame by sending back an
acknowledgement frame.

Another issue that arises in the data link layer (and most of the higher layers as well) is how to keep a fast
transmitter from drowning a slow receiver in data. Some traffic regulation mechanism is often needed to let the
transmitter know how much buffer space the receiver has at the moment. Frequently, this flow regulation and the
error handling are integrated.

Broadcast networks have an additional issue in the data link layer: how to control access to the shared channel.
A special sublayer of the data link layer, the medium access control sublayer, deals with this problem.

The Network Layer

The network layer controls the operation of the subnet. A key design issue is determining how packets are
routed from source to destination. Routes can be based on static tables that are "wired into" the network and
rarely changed. They can also be determined at the start of each conversation, for example, a terminal session
(e.g., a login to a remote machine). Finally, they can be highly dynamic, being determined anew for each packet,
to reflect the current network load.

If too many packets are present in the subnet at the same time, they will get in one another's way, forming
bottlenecks. The control of such congestion also belongs to the network layer. More generally, the quality of
service provided (delay, transit time, jitter, etc.) is also a network layer issue.

When a packet has to travel from one network to another to get to its destination, many problems can arise. The
addressing used by the second network may be different from the first one. The second one may not accept the
packet at all because it is too large. The protocols may differ, and so on. It is up to the network layer to overcome
all these problems to allow heterogeneous networks to be interconnected.

In broadcast networks, the routing problem is simple, so the network layer is often thin or even nonexistent.

The Transport Layer



The basic function of the transport layer is to accept data from above, split it up into smaller units if need be,
pass these to the network layer, and ensure that the pieces all arrive correctly at the other end. Furthermore, all
this must be done efficiently and in a way that isolates the upper layers from the inevitable changes in the
hardware technology.

The transport layer also determines what type of service to provide to the session layer, and, ultimately, to the
users of the network. The most popular type of transport connection is an error-free point-to-point channel that
delivers messages or bytes in the order in which they were sent. However, other possible kinds of transport
service are the transporting of isolated messages, with no guarantee about the order of delivery, and the
broadcasting of messages to multiple destinations. The type of service is determined when the connection is
established. (As an aside, an error-free channel is impossible to achieve; what people really mean by this term is
that the error rate is low enough to ignore in practice.)

The transport layer is a true end-to-end layer, all the way from the source to the destination. In other words, a
program on the source machine carries on a conversation with a similar program on the destination machine,
using the message headers and control messages. In the lower layers, the protocols are between each machine
and its immediate neighbors, and not between the ultimate source and destination machines, which may be
separated by many routers. The difference between layers 1 through 3, which are chained, and layers 4 through
7, which are end-to-end, is illustrated in Fig. 1-20.

The Session Layer

The session layer allows users on different machines to establish sessions between them. Sessions offer
various services, including dialog control (keeping track of whose turn it is to transmit), token management
(preventing two parties from attempting the same critical operation at the same time), and synchronization
(checkpointing long transmissions to allow them to continue from where they were after a crash).

The Presentation Layer

Unlike lower layers, which are mostly concerned with moving bits around, the presentation layer is concerned
with the syntax and semantics of the information transmitted. In order to make it possible for computers with
different data representations to communicate, the data structures to be exchanged can be defined in an
abstract way, along with a standard encoding to be used "on the wire." The presentation layer manages these
abstract data structures and allows higher-level data structures (e.g., banking records), to be defined and
exchanged.

The Application Layer

The application layer contains a variety of protocols that are commonly needed by users. One widely-used
application protocol is HTTP (HyperText Transfer Protocol), which is the basis for the World Wide Web. When a
browser wants a Web page, it sends the name of the page it wants to the server using HTTP. The server then
sends the page back. Other application protocols are used for file transfer, electronic mail, and network news.

1.4.2 The TCP/IP Reference Model

Let us now turn from the OSI reference model to the reference model used in the grandparent of all wide area
computer networks, the ARPANET, and its successor, the worldwide Internet. Although we will give a brief
history of the ARPANET later, it is useful to mention a few key aspects of it now. The ARPANET was a research
network sponsored by the DoD (U.S. Department of Defense). It eventually connected hundreds of universities
and government installations, using leased telephone lines. When satellite and radio networks were added later,
the existing protocols had trouble interworking with them, so a new reference architecture was needed. Thus,
the ability to connect multiple networks in a seamless way was one of the major design goals from the very
beginning. This architecture later became known as the TCP/IP Reference Model, after its two primary protocols.
It was first defined in (Cerf and Kahn, 1974). A later perspective is given in (Leiner et al., 1985). The design
philosophy behind the model is discussed in (Clark, 1988).

Given the DoD's worry that some of its precious hosts, routers, and internetwork gateways might get blown to



pieces at a moment's notice, another major goal was that the network be able to survive loss of subnet
hardware, with existing conversations not being broken off. In other words, DoD wanted connections to remain
intact as long as the source and destination machines were functioning, even if some of the machines or
transmission lines in between were suddenly put out of operation. Furthermore, a flexible architecture was
needed since applications with divergent requirements were envisioned, ranging from transferring files to real-
time speech transmission.

The Internet Layer

All these requirements led to the choice of a packet-switching network based on a connectionless internetwork
layer. This layer, called the internet layer, is the linchpin that holds the whole architecture together. Its job is to
permit hosts to inject packets into any network and have them travel independently to the destination (potentially
on a different network). They may even arrive in a different order than they were sent, in which case it is the job
of higher layers to rearrange them, if in-order delivery is desired. Note that "internet” is used here in a generic
sense, even though this layer is present in the Internet.

The analogy here is with the (snail) mail system. A person can drop a sequence of international letters into a
mail box in one country, and with a little luck, most of them will be delivered to the correct address in the
destination country. Probably the letters will travel through one or more international mail gateways along the
way, but this is transparent to the users. Furthermore, that each country (i.e., each network) has its own stamps,
preferred envelope sizes, and delivery rules is hidden from the users.

The internet layer defines an official packet format and protocol called IP (Internet Protocol). The job of the
internet layer is to deliver IP packets where they are supposed to go. Packet routing is clearly the major issue
here, as is avoiding congestion. For these reasons, it is reasonable to say that the TCP/IP internet layer is
similar in functionality to the OSI network layer. Figure 1-21 shows this correspondence.

Figure 1-21. The TCP/IP reference model.
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The Transport Layer

The layer above the internet layer in the TCP/IP model is now usually called the transport layer. It is designed to
allow peer entities on the source and destination hosts to carry on a conversation, just as in the OSI transport
layer. Two end-to-end transport protocols have been defined here. The first one, TCP (Transmission Control
Protocol), is a reliable connection-oriented protocol that allows a byte stream originating on one machine to be
delivered without error on any other machine in the internet. It fragments the incoming byte stream into discrete
messages and passes each one on to the internet layer. At the destination, the receiving TCP process
reassembles the received messages into the output stream. TCP also handles flow control to make sure a fast
sender cannot swamp a slow receiver with more messages than it can handle.

The second protocol in this layer, UDP (User Datagram Protocol), is an unreliable, connectionless protocol for
applications that do not want TCP's sequencing or flow control and wish to provide their own. It is also widely
used for one-shot, client-server-type request-reply queries and applications in which prompt delivery is more
important than accurate delivery, such as transmitting speech or video. The relation of IP, TCP, and UDP is



shown in Fig. 1-22. Since the model was developed, IP has been implemented on many other networks.

Figure 1-22. Protocols and networks in the TCP/IP model initially.
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The Application Layer

The TCP/IP model does not have session or presentation layers. No need for them was perceived, so they were
not included. Experience with the OSI model has proven this view correct: they are of little use to most
applications.

On top of the transport layer is the application layer. It contains all the higher-level protocols. The early ones
included virtual terminal (TELNET), file transfer (FTP), and electronic mail (SMTP), as shown in Fig. 1-22. The
virtual terminal protocol allows a user on one machine to log onto a distant machine and work there. The file
transfer protocol provides a way to move data efficiently from one machine to another. Electronic mail was
originally just a kind of file transfer, but later a specialized protocol (SMTP) was developed for it. Many other
protocols have been added to these over the years: the Domain Name System (DNS) for mapping host names
onto their network addresses, NNTP, the protocol for moving USENET news articles around, and HTTP, the
protocol for fetching pages on the World Wide Web, and many others.

The Host-to-Network Layer

Below the internet layer is a great void. The TCP/IP reference model does not really say much about what
happens here, except to point out that the host has to connect to the network using some protocol so it can send
IP packets to it. This protocol is not defined and varies from host to host and network to network. Books and
papers about the TCP/IP model rarely discuss it.

1.4.3 A Comparison of the OSI and TCP/IP Reference Models

The OSI and TCP/IP reference models have much in common. Both are based on the concept of a stack of
independent protocols. Also, the functionality of the layers is roughly similar. For example, in both models the
layers up through and including the transport layer are there to provide an end-to-end, network-independent
transport service to processes wishing to communicate. These layers form the transport provider. Again in both
models, the layers above transport are application-oriented users of the transport service.

Despite these fundamental similarities, the two models also have many differences. In this section we will focus
on the key differences between the two reference models. It is important to note that we are comparing the
reference models here, not the corresponding protocol stacks. The protocols themselves will be discussed later.
For an entire book comparing and contrasting TCP/IP and OSlI, see (Piscitello and Chapin, 1993).

Three concepts are central to the OSI model:

1. Services.
2. Interfaces.
3. Protocols.



Probably the biggest contribution of the OSI model is to make the distinction between these three concepts
explicit. Each layer performs some services for the layer above it. The service definition tells what the layer does,
not how entities above it access it or how the layer works. It defines the layer's semantics.

A layer's interface tells the processes above it how to access it. It specifies what the parameters are and what
results to expect. It, too, says nothing about how the layer works inside.

Finally, the peer protocols used in a layer are the layer's own business. It can use any protocols it wants to, as
long as it gets the job done (i.e., provides the offered services). It can also change them at will without affecting
software in higher layers.

These ideas fit very nicely with modern ideas about object-oriented programming. An object, like a layer, has a
set of methods (operations) that processes outside the object can invoke. The semantics of these methods
define the set of services that the object offers. The methods' parameters and results form the object's interface.
The code internal to the object is its protocol and is not visible or of any concern outside the object.

The TCP/IP model did not originally clearly distinguish between service, interface, and protocol, although people
have tried to retrofit it after the fact to make it more OSl-like. For example, the only real services offered by the
internet layer are SEND IP PACKET and RECEIVE IP PACKET.

As a consequence, the protocols in the OSI model are better hidden than in the TCP/IP model and can be
replaced relatively easily as the technology changes. Being able to make such changes is one of the main
purposes of having layered protocols in the first place.

The OSI reference model was devised before the corresponding protocols were invented. This ordering means
that the model was not biased toward one particular set of protocols, a fact that made it quite general. The
downside of this ordering is that the designers did not have much experience with the subject and did not have a
good idea of which functionality to put in which layer.

For example, the data link layer originally dealt only with point-to-point networks. When broadcast networks
came around, a new sublayer had to be hacked into the model. When people started to build real networks using
the OSI model and existing protocols, it was discovered that these networks did not match the required service
specifications (wonder of wonders), so convergence sublayers had to be grafted onto the model to provide a
place for papering over the differences. Finally, the committee originally expected that each country would have
one network, run by the government and using the OSI protocols, so no thought was given to internetworking.
To make a long story short, things did not turn out that way.

With TCP/IP the reverse was true: the protocols came first, and the model was really just a description of the
existing protocols. There was no problem with the protocols fitting the model. They fit perfectly. The only trouble
was that the model did not fit any other protocol stacks. Consequently, it was not especially useful for describing
other, non-TCP/IP networks.

Turning from philosophical matters to more specific ones, an obvious difference between the two models is the
number of layers: the OSI model has seven layers and the TCP/IP has four layers. Both have (inter)network,
transport, and application layers, but the other layers are different.

Another difference is in the area of connectionless versus connection-oriented communication. The OSI model
supports both connectionless and connection-oriented communication in the network layer, but only connection-
oriented communication in the transport layer, where it counts (because the transport service is visible to the
users). The TCP/IP model has only one mode in the network layer (connectionless) but supports both modes in
the transport layer, giving the users a choice. This choice is especially important for simple request-response
protocols.

1.4.4 A Critique of the OSI Model and Protocols

Neither the OSI model and its protocols nor the TCP/IP model and its protocols are perfect. Quite a bit of
criticism can be, and has been, directed at both of them. In this section and the next one, we will look at some of



these criticisms. We will begin with OSI and examine TCP/IP afterward.

At the time the second edition of this book was published (1989), it appeared to many experts in the field that the
OSI model and its protocols were going to take over the world and push everything else out of their way. This did
not happen. Why? A look back at some of the lessons may be useful. These lessons can be summarized as:

1. Bad timing.

2. Bad technology.

3. Bad implementations.
4. Bad politics.

Bad Timing

First let us look at reason one: bad timing. The time at which a standard is established is absolutely critical to its
success. David Clark of M.I.T. has a theory of standards that he calls the apocalypse of the two elephants, which
is illustrated in Fig. 1-23.

Figure 1-23. The apocalypse of the two elephants.

Billicn dollar
Research investment

l

-

Activity

Standards

1

Time -

This figure shows the amount of activity surrounding a new subject. When the subject is first discovered, there is
a burst of research activity in the form of discussions, papers, and meetings. After a while this activity subsides,
corporations discover the subject, and the billion-dollar wave of investment hits.

It is essential that the standards be written in the trough in between the two "elephants." If the standards are
written too early, before the research is finished, the subject may still be poorly understood; the result is bad
standards. If they are written too late, so many companies may have already made major investments in
different ways of doing things that the standards are effectively ignored. If the interval between the two elephants
is very short (because everyone is in a hurry to get started), the people developing the standards may get
crushed.

It now appears that the standard OSI protocols got crushed. The competing TCP/IP protocols were already in
widespread use by research universities by the time the OSI protocols appeared. While the billion-dollar wave of
investment had not yet hit, the academic market was large enough that many vendors had begun cautiously
offering TCP/IP products. When OSI came around, they did not want to support a second protocol stack until
they were forced to, so there were no initial offerings. With every company waiting for every other company to go
first, no company went first and OSI never happened.

Bad Technology

The second reason that OSI never caught on is that both the model and the protocols are flawed. The choice of
seven layers was more political than technical, and two of the layers (session and presentation) are nearly
empty, whereas two other ones (data link and network) are overfull.

The OSI model, along with the associated service definitions and protocols, is extraordinarily complex. When



piled up, the printed standards occupy a significant fraction of a meter of paper. They are also difficult to
implement and inefficient in operation. In this context, a riddle posed by Paul Mockapetris and cited in (Rose,
1993) comes to mind:

Q1: What do you get when you cross a mobster with an international standard?

Al: Someone who makes you an offer you can't understand.

In addition to being incomprehensible, another problem with OSI is that some functions, such as addressing,
flow control, and error control, reappear again and again in each layer. Saltzer et al. (1984), for example, have
pointed out that to be effective, error control must be done in the highest layer, so that repeating it over and over
in each of the lower layers is often unnecessary and inefficient.

Bad Implementations

Given the enormous complexity of the model and the protocols, it will come as no surprise that the initial
implementations were huge, unwieldy, and slow. Everyone who tried them got burned. It did not take long for
people to associate "OSI" with "poor quality." Although the products improved in the course of time, the image
stuck.

In contrast, one of the first implementations of TCP/IP was part of Berkeley UNIX and was quite good (not to
mention, free). People began using it quickly, which led to a large user community, which led to improvements,
which led to an even larger community. Here the spiral was upward instead of downward.

Bad Politics

On account of the initial implementation, many people, especially in academia, thought of TCP/IP as part of
UNIX, and UNIX in the 1980s in academia was not unlike parenthood (then incorrectly called motherhood) and

apple pie.

OSl, on the other hand, was widely thought to be the creature of the European telecommunication ministries, the
European Community, and later the U.S. Government. This belief was only partly true, but the very idea of a
bunch of government bureaucrats trying to shove a technically inferior standard down the throats of the poor
researchers and programmers down in the trenches actually developing computer networks did not help much.
Some people viewed this development in the same light as IBM announcing in the 1960s that PL/I was the
language of the future, or DoD correcting this later by announcing that it was actually Ada.

1.4.5 A Critique of the TCP/IP Reference Model

The TCP/IP model and protocols have their problems too. First, the model does not clearly distinguish the
concepts of service, interface, and protocol. Good software engineering practice requires differentiating between
the specification and the implementation, something that OSI does very carefully, and TCP/IP does not.
Consequently, the TCP/IP model is not much of a guide for designing new networks using new technologies.

Second, the TCP/IP model is not at all general and is poorly suited to describing any protocol stack other than
TCP/IP. Trying to use the TCP/IP model to describe Bluetooth, for example, is completely impossible.

Third, the host-to-network layer is not really a layer at all in the normal sense of the term as used in the context
of layered protocols. It is an interface (between the network and data link layers). The distinction between an
interface and a layer is crucial, and one should not be sloppy about it.



Fourth, the TCP/IP model does not distinguish (or even mention) the physical and data link layers. These are
completely different. The physical layer has to do with the transmission characteristics of copper wire, fiber
optics, and wireless communication. The data link layer's job is to delimit the start and end of frames and get
them from one side to the other with the desired degree of reliability. A proper model should include both as
separate layers. The TCP/IP model does not do this.

Finally, although the IP and TCP protocols were carefully thought out and well implemented, many of the other
protocols were ad hoc, generally produced by a couple of graduate students hacking away until they got tired.
The protocol implementations were then distributed free, which resulted in their becoming widely used, deeply
entrenched, and thus hard to replace. Some of them are a bit of an embarrassment now. The virtual terminal
protocol, TELNET, for example, was designed for a ten-character per second mechanical Teletype terminal. It
knows nothing of graphical user interfaces and mice. Nevertheless, 25 years later, it is still in widespread use.

In summary, despite its problems, the OSI model (minus the session and presentation layers) has proven to be
exceptionally useful for discussing computer networks. In contrast, the OSI protocols have not become popular.
The reverse is true of TCP/IP: the model is practically nonexistent, but the protocols are widely used. Since
computer scientists like to have their cake and eat it, too, in this book we will use a modified OSI model but
concentrate primarily on the TCP/IP and related protocols, as well as newer ones such as 802, SONET, and
Bluetooth. In effect, we will use the hybrid model of Fig. 1-24 as the framework for this book.

Figure 1-24. The hybrid reference model to be used in this book.
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1.5 Example Networks

The subject of computer networking covers many different kinds of networks, large and small, well known and
less well known. They have different goals, scales, and technologies. In the following sections, we will look at
some examples, to get an idea of the variety one finds in the area of computer networking.

We will start with the Internet, probably the best known network, and look at its history, evolution, and
technology. Then we will consider ATM, which is often used within the core of large (telephone) networks.
Technically, it is quite different from the Internet, contrasting nicely with it. Next we will introduce Ethernet, the
dominant local area network. Finally, we will look at IEEE 802.11, the standard for wireless LANSs.

1.5.1 The Internet

The Internet is not a network at all, but a vast collection of different networks that use certain common protocols
and provide certain common services. It is an unusual system in that it was not planned by anyone and is not
controlled by anyone. To better understand it, let us start from the beginning and see how it has developed and
why. For a wonderful history of the Internet, John Naughton's (2000) book is highly recommended. It is one of
those rare books that is not only fun to read, but also has 20 pages of ibid.'s and op. cit.'s for the serious
historian. Some of the material below is based on this book.

Of course, countless technical books have been written about the Internet and its protocols as well. For more
information, see, for example, (Maufer, 1999).

The ARPANET

The story begins in the late 1950s. At the height of the Cold War, the DoD wanted a command-and-control
network that could survive a nuclear war. At that time, all military communications used the public telephone
network, which was considered vulnerable. The reason for this belief can be gleaned from Fig. 1-25(a). Here the



black dots represent telephone switching offices, each of which was connected to thousands of telephones.
These switching offices were, in turn, connected to higher-level switching offices (toll offices), to form a national
hierarchy with only a small amount of redundancy. The vulnerability of the system was that the destruction of a
few key toll offices could fragment the system into many isolated islands.

Figure 1-25. (a) Structure of the telephone system. (b) Baran's proposed distributed switching system.
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Around 1960, the DoD awarded a contract to the RAND Corporation to find a solution. One of its employees,
Paul Baran, came up with the highly distributed and fault-tolerant design of Fig. 1-25(b). Since the paths
between any two switching offices were now much longer than analog signals could travel without distortion,
Baran proposed using digital packet-switching technology throughout the system. Baran wrote several reports
for the DoD describing his ideas in detail. Officials at the Pentagon liked the concept and asked AT&T, then the
U.S. national telephone monopoly, to build a prototype. AT&T dismissed Baran's ideas out of hand. The biggest
and richest corporation in the world was not about to allow some young whippersnapper tell it how to build a
telephone system. They said Baran's network could not be built and the idea was killed.

Several years went by and still the DoD did not have a better command-and-control system. To understand what
happened next, we have to go back to October 1957, when the Soviet Union beat the U.S. into space with the
launch of the first artificial satellite, Sputnik. When President Eisenhower tried to find out who was asleep at the
switch, he was appalled to find the Army, Navy, and Air Force squabbling over the Pentagon's research budget.
His immediate response was to create a single defense research organization, ARPA, the Advanced Research
Projects Agency. ARPA had no scientists or laboratories; in fact, it had nothing more than an office and a small
(by Pentagon standards) budget. It did its work by issuing grants and contracts to universities and companies
whose ideas looked promising to it.

For the first few years, ARPA tried to figure out what its mission should be, but in 1967, the attention of ARPA's
then director, Larry Roberts, turned to networking. He contacted various experts to decide what to do. One of
them, Wesley Clark, suggested building a packet-switched subnet, giving each host its own router, as illustrated

in Fig. 1-10.

After some initial skepticism, Roberts bought the idea and presented a somewhat vague paper about it at the
ACM SIGOPS Symposium on Operating System Principles held in Gatlinburg, Tennessee in late 1967 (Roberts,
1967). Much to Roberts' surprise, another paper at the conference described a similar system that had not only
been designed but actually implemented under the direction of Donald Davies at the National Physical
Laboratory in England. The NPL system was not a national system (it just connected several computers on the
NPL campus), but it demonstrated that packet switching could be made to work. Furthermore, it cited Baran's
now discarded earlier work. Roberts came away from Gatlinburg determined to build what later became known
as the ARPANET.



The subnet would consist of minicomputers called IMPs (Interface Message Processors) connected by 56-kbps
transmission lines. For high reliability, each IMP would be connected to at least two other IMPs. The subnet was
to be a datagram subnet, so if some lines and IMPs were destroyed, messages could be automatically rerouted
along alternative paths.

Each node of the network was to consist of an IMP and a host, in the same room, connected by a short wire. A
host could send messages of up to 8063 bits to its IMP, which would then break these up into packets of at most
1008 bits and forward them independently toward the destination. Each packet was received in its entirety
before being forwarded, so the subnet was the first electronic store-and-forward packet-switching network.

ARPA then put out a tender for building the subnet. Twelve companies bid for it. After evaluating all the
proposals, ARPA selected BBN, a consulting firm in Cambridge, Massachusetts, and in December 1968,
awarded it a contract to build the subnet and write the subnet software. BBN chose to use specially modified
Honeywell DDP-316 minicomputers with 12K 16-bit words of core memory as the IMPs. The IMPs did not have
disks, since moving parts were considered unreliable. The IMPs were interconnected by 56-kbps lines leased
from telephone companies. Although 56 kbps is now the choice of teenagers who cannot afford ADSL or cable,
it was then the best money could buy.

The software was split into two parts: subnet and host. The subnet software consisted of the IMP end of the
host-IMP connection, the IMP-IMP protocol, and a source IMP to destination IMP protocol designed to improve
reliability. The original ARPANET design is shown in Fig. 1-26.

Figure 1-26. The original ARPANET design.
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Outside the subnet, software was also needed, namely, the host end of the host-IMP connection, the host-host
protocol, and the application software. It soon became clear that BBN felt that when it had accepted a message
on a host-IMP wire and placed it on the host-IMP wire at the destination, its job was done.

Roberts had a problem: the hosts needed software too. To deal with it, he convened a meeting of network
researchers, mostly graduate students, at Snowbird, Utah, in the summer of 1969. The graduate students
expected some network expert to explain the grand design of the network and its software to them and then to
assign each of them the job of writing part of it. They were astounded when there was no network expert and no
grand design. They had to figure out what to do on their own.

Nevertheless, somehow an experimental network went on the air in December 1969 with four nodes: at UCLA,
UCSB, SRI, and the University of Utah. These four were chosen because all had a large number of ARPA
contracts, and all had different and completely incompatible host computers (just to make it more fun). The
network grew quickly as more IMPs were delivered and installed; it soon spanned the United States. Figure 1-27
shows how rapidly the ARPANET grew in the first 3 years.

Figure 1-27. Growth of the ARPANET. (a) December 1969. (b) July 1970. (c) March 1971. (d) April 1972. (e)
September 1972.
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In addition to helping the fledgling ARPANET grow, ARPA also funded research on the use of satellite networks
and mobile packet radio networks. In one now famous demonstration, a truck driving around in California used
the packet radio network to send messages to SRI, which were then forwarded over the ARPANET to the East
Coast, where they were shipped to University College in London over the satellite network. This allowed a
researcher in the truck to use a computer in London while driving around in California.

This experiment also demonstrated that the existing ARPANET protocols were not suitable for running over
multiple networks. This observation led to more research on protocols, culminating with the invention of the
TCP/IP model and protocols (Cerf and Kahn, 1974). TCP/IP was specifically designed to handle communication
over internetworks, something becoming increasingly important as more and more networks were being hooked
up to the ARPANET.

To encourage adoption of these new protocols, ARPA awarded several contracts to BBN and the University of
California at Berkeley to integrate them into Berkeley UNIX. Researchers at Berkeley developed a convenient
program interface to the network (sockets) and wrote many application, utility, and management programs to
make networking easier.

The timing was perfect. Many universities had just acquired a second or third VAX computer and a LAN to
connect them, but they had no networking software. When 4.2BSD came along, with TCP/IP, sockets, and many
network utilities, the complete package was adopted immediately. Furthermore, with TCP/IP, it was easy for the
LANSs to connect to the ARPANET, and many did.

During the 1980s, additional networks, especially LANs, were connected to the ARPANET. As the scale
increased, finding hosts became increasingly expensive, so DNS (Domain Name System) was created to
organize machines into domains and map host names onto IP addresses. Since then, DNS has become a
generalized, distributed database system for storing a variety of information related to naming. We will study it in
detail in Chap. 7.

NSFENET

By the late 1970s, NSF (the U.S. National Science Foundation) saw the enormous impact the ARPANET was
having on university research, allowing scientists across the country to share data and collaborate on research
projects. However, to get on the ARPANET, a university had to have a research contract with the DoD, which
many did not have. NSF's response was to design a successor to the ARPANET that would be open to all
university research groups. To have something concrete to start with, NSF decided to build a backbone network



to connect its six supercomputer centers, in San Diego, Boulder, Champaign, Pittsburgh, Ithaca, and Princeton.
Each supercomputer was given a little brother, consisting of an LSI-11 microcomputer called a fuzzball. The
fuzzballs were connected with 56-kbps leased lines and formed the subnet, the same hardware technology as
the ARPANET used. The software technology was different however: the fuzzballs spoke TCP/IP right from the
start, making it the first TCP/IP WAN.

NSF also funded some (eventually about 20) regional networks that connected to the backbone to allow users at
thousands of universities, research labs, libraries, and museums to access any of the supercomputers and to
communicate with one another. The complete network, including the backbone and the regional networks, was
called NSFNET. It connected to the ARPANET through a link between an IMP and a fuzzball in the Carnegie-
Mellon machine room. The first NSFNET backbone is illustrated in Fig. 1-28.

Figure 1-28. The NSFNET backbone in 1988.
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NSFNET was an instantaneous success and was overloaded from the word go. NSF immediately began
planning its successor and awarded a contract to the Michigan-based MERIT consortium to run it. Fiber optic
channels at 448 kbps were leased from MCI (since merged with WorldCom) to provide the version 2 backbone.
IBM PC-RTs were used as routers. This, too, was soon overwhelmed, and by 1990, the second backbone was
upgraded to 1.5 Mbps.

As growth continued, NSF realized that the government could not continue financing networking forever.
Furthermore, commercial organizations wanted to join but were forbidden by NSF's charter from using networks
NSF paid for. Consequently, NSF encouraged MERIT, MCI, and IBM to form a nonprofit corporation, ANS
(Advanced Networks and Services), as the first step along the road to commercialization. In 1990, ANS took
over NSFNET and upgraded the 1.5-Mbps links to 45 Mbps to form ANSNET. This network operated for 5 years
and was then sold to America Online. But by then, various companies were offering commercial IP service and it
was clear the government should now get out of the networking business.

To ease the transition and make sure every regional network could communicate with every other regional
network, NSF awarded contracts to four different network operators to establish a NAP (Network Access Point).
These operators were PacBell (San Francisco), Ameritech (Chicago), MFS (Washington, D.C.), and Sprint (New
York City, where for NAP purposes, Pennsauken, New Jersey counts as New York City). Every network operator
that wanted to provide backbone service to the NSF regional networks had to connect to all the NAPs.

This arrangement meant that a packet originating on any regional network had a choice of backbone carriers to
get from its NAP to the destination's NAP. Consequently, the backbone carriers were forced to compete for the
regional networks' business on the basis of service and price, which was the idea, of course. As a result, the
concept of a single default backbone was replaced by a commercially-driven competitive infrastructure. Many
people like to criticize the Federal Government for not being innovative, but in the area of networking, it was DoD
and NSF that created the infrastructure that formed the basis for the Internet and then handed it over to industry
to operate.



During the 1990s, many other countries and regions also built national research networks, often patterned on the
ARPANET and NSFNET. These included EuropaNET and EBONE in Europe, which started out with 2-Mbps
lines and then upgraded to 34-Mbps lines. Eventually, the network infrastructure in Europe was handed over to
industry as well.

Internet Usage

The number of networks, machines, and users connected to the ARPANET grew rapidly after TCP/IP became
the only official protocol on January 1, 1983. When NSFNET and the ARPANET were interconnected, the growth
became exponential. Many regional networks joined up, and connections were made to networks in Canada,
Europe, and the Pacific.

Sometime in the mid-1980s, people began viewing the collection of networks as an internet, and later as the
Internet, although there was no official dedication with some politician breaking a bottle of champagne over a
fuzzball.

The glue that holds the Internet together is the TCP/IP reference model and TCP/IP protocol stack. TCP/IP
makes universal service possible and can be compared to the adoption of standard gauge by the railroads in the
19th century or the adoption of common signaling protocols by all the telephone companies.

What does it actually mean to be on the Internet? Our definition is that a machine is on the Internet if it runs the
TCPI/IP protocol stack, has an IP address, and can send IP packets to all the other machines on the Internet.
The mere ability to send and receive electronic mail is not enough, since e-mail is gatewayed to many networks
outside the Internet. However, the issue is clouded somewhat by the fact that millions of personal computers can
call up an Internet service provider using a modem, be assigned a temporary IP address, and send IP packets to
other Internet hosts. It makes sense to regard such machines as being on the Internet for as long as they are
connected to the service provider's router.

Traditionally (meaning 1970 to about 1990), the Internet and its predecessors had four main applications:

1. E-mail. The ability to compose, send, and receive electronic mail has been around since the early days
of the ARPANET and is enormously popular. Many people get dozens of messages a day and consider
it their primary way of interacting with the outside world, far outdistancing the telephone and snail mail.
E-mail programs are available on virtually every kind of computer these days.

2. News. Newsgroups are specialized forums in which users with a common interest can exchange
messages. Thousands of newsgroups exist, devoted to technical and nontechnical topics, including
computers, science, recreation, and politics. Each newsgroup has its own etiquette, style, and customs,
and woe betide anyone violating them.

3. Remote login. Using the telnet, rlogin, or ssh programs, users anywhere on the Internet can log on to
any other machine on which they have an account.

4. File transfer. Using the FTP program, users can copy files from one machine on the Internet to another.
Vast numbers of articles, databases, and other information are available this way.

Up until the early 1990s, the Internet was largely populated by academic, government, and industrial
researchers. One new application, the WWW (World Wide Web) changed all that and brought millions of new,
nonacademic users to the net. This application, invented by CERN physicist Tim Berners-Lee, did not change
any of the underlying facilities but made them easier to use. Together with the Mosaic browser, written by Marc
Andreessen at the National Center for Supercomputer Applications in Urbana, lllinois, the WWW made it
possible for a site to set up a number of pages of information containing text, pictures, sound, and even video,
with embedded links to other pages. By clicking on a link, the user is suddenly transported to the page pointed to
by that link. For example, many companies have a home page with entries pointing to other pages for product
information, price lists, sales, technical support, communication with employees, stockholder information, and
more.

Numerous other kinds of pages have come into existence in a very short time, including maps, stock market
tables, library card catalogs, recorded radio programs, and even a page pointing to the complete text of many
books whose copyrights have expired (Mark Twain, Charles Dickens, etc.). Many people also have personal
pages (home pages).



Much of this growth during the 1990s was fueled by companies called ISPs (Internet Service Providers). These
are companies that offer individual users at home the ability to call up one of their machines and connect to the
Internet, thus gaining access to e-mail, the WWW, and other Internet services. These companies signed up tens
of millions of new users a year during the late 1990s, completely changing the character of the network from an
academic and military playground to a public utility, much like the telephone system. The number of Internet
users now is unknown, but is certainly hundreds of millions worldwide and will probably hit 1 billion fairly soon.

Architecture of the Internet

In this section we will attempt to give a brief overview of the Internet today. Due to the many mergers between
telephone companies (telcos) and ISPs, the waters have become muddied and it is often hard to tell who is
doing what. Consequently, this description will be of necessity somewhat simpler than reality. The big picture is
shown in Fig. 1-29. Let us examine this figure piece by piece now.

Figure 1-29. Overview of the Internet.
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A good place to start is with a client at home. Let us assume our client calls his or her ISP over a dial-up
telephone line, as shown in Fig. 1-29. The modem is a card within the PC that converts the digital signals the
computer produces to analog signals that can pass unhindered over the telephone system. These signals are
transferred to the ISP's POP (Point of Presence), where they are removed from the telephone system and
injected into the ISP's regional network. From this point on, the system is fully digital and packet switched. If the
ISP is the local telco, the POP will probably be located in the telephone switching office where the telephone
wire from the client terminates. If the ISP is not the local telco, the POP may be a few switching offices down the
road.

Router

The ISP's regional network consists of interconnected routers in the various cities the ISP serves. If the packet is
destined for a host served directly by the ISP, the packet is delivered to the host. Otherwise, it is handed over to
the ISP's backbone operator.

At the top of the food chain are the major backbone operators, companies like AT&T and Sprint. They operate
large international backbone networks, with thousands of routers connected by high-bandwidth fiber optics.
Large corporations and hosting services that run server farms (machines that can serve thousands of Web
pages per second) often connect directly to the backbone. Backbone operators encourage this direct connection
by renting space in what are called carrier hotels, basically equipment racks in the same room as the router to
allow short, fast connections between server farms and the backbone.



If a packet given to the backbone is destined for an ISP or company served by the backbone, it is sent to the
closest router and handed off there. However, many backbones, of varying sizes, exist in the world, so a packet
may have to go to a competing backbone. To allow packets to hop between backbones, all the major backbones
connect at the NAPs discussed earlier. Basically, a NAP is a room full of routers, at least one per backbone. A
LAN in the room connects all the routers, so packets can be forwarded from any backbone to any other
backbone. In addition to being interconnected at NAPs, the larger backbones have numerous direct connections
between their routers, a technique known as private peering. One of the many paradoxes of the Internet is that
ISPs who publicly compete with one another for customers often privately cooperate to do private peering (Metz,
2001).

This ends our quick tour of the Internet. We will have a great deal to say about the individual components and
their design, algorithms, and protocols in subsequent chapters. Also worth mentioning in passing is that some
companies have interconnected all their existing internal networks, often using the same technology as the
Internet. These intranets are typically accessible only within the company but otherwise work the same way as
the Internet.

1.5.2 Connection-Oriented Networks: X.25, Frame Relay, and ATM

Since the beginning of networking, a war has been going on between the people who support connectionless
(i.e., datagram) subnets and the people who support connection-oriented subnets. The main proponents of the
connectionless subnets come from the ARPANET/Internet community. Remember that DoD's original desire in
funding and building the ARPANET was to have a network that would continue functioning even after multiple
direct hits by nuclear weapons wiped out numerous routers and transmission lines. Thus, fault tolerance was
high on their priority list; billing customers was not. This approach led to a connectionless design in which every
packet is routed independently of every other packet. As a consequence, if some routers go down during a
session, no harm is done as long as the system can reconfigure itself dynamically so that subsequent packets
can find some route to the destination, even if it is different from that which previous packets used.

The connection-oriented camp comes from the world of telephone companies. In the telephone system, a caller
must dial the called party's number and wait for a connection before talking or sending data. This connection
setup establishes a route through the telephone system that is maintained until the call is terminated. All words
or packets follow the same route. If a line or switch on the path goes down, the call is aborted. This property is
precisely what the DoD did not like about it.

Why do the telephone companies like it then? There are two reasons:

1. Quality of service.
2. Billing.

By setting up a connection in advance, the subnet can reserve resources such as buffer space and router CPU
capacity. If an attempt is made to set up a call and insufficient resources are available, the call is rejected and
the caller gets a kind of busy signal. In this way, once a connection has been set up, the connection will get good
service. With a connectionless network, if too many packets arrive at the same router at the same moment, the
router will choke and probably lose packets. The sender will eventually notice this and resend them, but the
quality of service will be jerky and unsuitable for audio or video unless the network is very lightly loaded.
Needless to say, providing adequate audio quality is something telephone companies care about very much,
hence their preference for connections.

The second reason the telephone companies like connection-oriented service is that they are accustomed to
charging for connect time. When you make a long distance call (or even a local call outside North America) you
are charged by the minute. When networks came around, they just automatically gravitated toward a model in
which charging by the minute was easy to do. If you have to set up a connection before sending data, that is
when the billing clock starts running. If there is no connection, they cannot charge for it.

Ironically, maintaining billing records is very expensive. If a telephone company were to adopt a flat monthly rate
with unlimited calling and no billing or record keeping, it would probably save a huge amount of money, despite
the increased calling this policy would generate. Political, regulatory, and other factors weigh against doing this,
however. Interestingly enough, flat rate service exists in other sectors. For example, cable TV is billed at a flat



rate per month, no matter how many programs you watch. It could have been designed with pay-per-view as the
basic concept, but it was not, due in part to the expense of billing (and given the quality of most television, the
embarrassment factor cannot be totally discounted either). Also, many theme parks charge a daily admission fee
for unlimited rides, in contrast to traveling carnivals, which charge by the ride.

That said, it should come as no surprise that all networks designed by the telephone industry have had
connection-oriented subnets. What is perhaps surprising, is that the Internet is also drifting in that direction, in
order to provide a better quality of service for audio and video, a subject we will return to in Chap. 5. But now let
us examine some connection-oriented networks.

X.25 and Frame Relay

Our first example of a connection-oriented network is X.25, which was the first public data network. It was
deployed in the 1970s at a time when telephone service was a monopoly everywhere and the telephone
company in each country expected there to be one data network per country—theirs. To use X.25, a computer
first established a connection to the remote computer, that is, placed a telephone call. This connection was given
a connection number to be used in data transfer packets (because multiple connections could be open at the
same time). Data packets were very simple, consisting of a 3-byte header and up to 128 bytes of data. The
header consisted of a 12-bit connection number, a packet sequence number, an acknowledgement number, and
a few miscellaneous bits. X.25 networks operated for about a decade with mixed success.

In the 1980s, the X.25 networks were largely replaced by a new kind of network called frame relay. The essence
of frame relay is that it is a connection-oriented network with no error control and no flow control. Because it was
connection-oriented, packets were delivered in order (if they were delivered at all). The properties of in-order
delivery, no error control, and no flow control make frame relay akin to a wide area LAN. Its most important
application is interconnecting LANs at multiple company offices. Frame relay enjoyed a modest success and is
still in use in places today.

Asynchronous Transfer Mode

Yet another, and far more important, connection-oriented network is ATM (Asynchronous Transfer Mode). The
reason for the somewhat strange name is that in the telephone system, most transmission is synchronous
(closely tied to a clock), and ATM is not.

ATM was designed in the early 1990s and launched amid truly incredible hype (Ginsburg, 1996; Goralski, 1995;
Ibe, 1997; Kim et al.,, 1994; and Stallings, 2000). ATM was going to solve all the world's networking and
telecommunications problems by merging voice, data, cable television, telex, telegraph, carrier pigeon, tin cans
connected by strings, tom-toms, smoke signals, and everything else into a single integrated system that could do
everything for everyone. It did not happen. In large part, the problems were similar to those we described earlier
concerning OSI, that is, bad timing, technology, implementation, and politics. Having just beaten back the
telephone companies in round 1, many in the Internet community saw ATM as Internet versus the Telcos: the
Sequel. But it really was not, and this time around even diehard datagram fanatics were aware that the Internet's
quality of service left a lot to be desired. To make a long story short, ATM was much more successful than OSlI,
and it is now widely used deep within the telephone system, often for moving IP packets. Because it is now
mostly used by carriers for internal transport, users are often unaware of its existence, but it is definitely alive
and well.

ATM Virtual Circuits

Since ATM networks are connection-oriented, sending data requires first sending a packet to set up the
connection. As the setup packet wends its way through the subnet, all the routers on the path make an entry in
their internal tables noting the existence of the connection and reserving whatever resources are needed for it.
Connections are often called virtual circuits, in analogy with the physical circuits used within the telephone
system. Most ATM networks also support permanent virtual circuits, which are permanent connections between
two (distant) hosts. They are similar to leased lines in the telephone world. Each connection, temporary or
permanent, has a unique connection identifier. A virtual circuit is illustrated in Fig. 1-30.

Figure 1-30. A virtual circuit.
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Once a connection has been established, either side can begin transmitting data. The basic idea behind ATM is
to transmit all information in small, fixed-size packets called cells. The cells are 53 bytes long, of which 5 bytes
are header and 48 bytes are payload, as shown in Fig. 1-31. Part of the header is the connection identifier, so
the sending and receiving hosts and all the intermediate routers can tell which cells belong to which connections.
This information allows each router to know how to route each incoming cell. Cell routing is done in hardware, at
high speed. In fact, the main argument for having fixed-size cells is that it is easy to build hardware routers to
handle short, fixed-length cells. Variable-length IP packets have to be routed by software, which is a slower
process. Another plus of ATM is that the hardware can be set up to copy one incoming cell to multiple output
lines, a property that is required for handling a television program that is being broadcast to many receivers.
Finally, small cells do not block any line for very long, which makes guaranteeing quality of service easier.

Figure 1-31. An ATM cell.
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All cells follow the same route to the destination. Cell delivery is not guaranteed, but their order is. If cells 1 and 2
are sent in that order, then if both arrive, they will arrive in that order, never first 2 then 1. But either or both of
them can be lost along the way. It is up to higher protocol levels to recover from lost cells. Note that although this
guarantee is not perfect, it is better than what the Internet provides. There packets can not only be lost, but
delivered out of order as well. ATM, in contrast, guarantees never to deliver cells out of order.

ATM networks are organized like traditional WANSs, with lines and switches (routers). The most common speeds
for ATM networks are 155 Mbps and 622 Mbps, although higher speeds are also supported. The 155-Mbps
speed was chosen because this is about what is needed to transmit high definition television. The exact choice
of 155.52 Mbps was made for compatibility with AT&T's SONET transmission system, something we will study in
Chap. 2. The 622 Mbps speed was chosen so that four 155-Mbps channels could be sent over it.

The ATM Reference Model

ATM has its own reference model, different from the OSI model and also different from the TCP/IP model. This
model is shown in Fig. 1-32. It consists of three layers, the physical, ATM, and ATM adaptation layers, plus
whatever users want to put on top of that.

Figure 1-32. The ATM reference model.
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The physical layer deals with the physical medium: voltages, bit timing, and various other issues. ATM does not
prescribe a particular set of rules but instead says that ATM cells can be sent on a wire or fiber by themselves,
but they can also be packaged inside the payload of other carrier systems. In other words, ATM has been
designed to be independent of the transmission medium.

The ATM layer deals with cells and cell transport. It defines the layout of a cell and tells what the header fields
mean. It also deals with establishment and release of virtual circuits. Congestion control is also located here.

Because most applications do not want to work directly with cells (although some may), a layer above the ATM
layer has been defined to allow users to send packets larger than a cell. The ATM interface segments these
packets, transmits the cells individually, and reassembles them at the other end. This layer is the AAL (ATM
Adaptation Layer).

Unlike the earlier two-dimensional reference models, the ATM model is defined as being three-dimensional, as
shown in Fig. 1-32. The user plane deals with data transport, flow control, error correction, and other user
functions. In contrast, the control plane is concerned with connection management. The layer and plane
management functions relate to resource management and interlayer coordination.

The physical and AAL layers are each divided into two sublayers, one at the bottom that does the work and a
convergence sublayer on top that provides the proper interface to the layer above it. The functions of the layers
and sublayers are given in Fig. 1-33.

Figure 1-33. The ATM layers and sublayers, and their functions.
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The PMD (Physical Medium Dependent) sublayer interfaces to the actual cable. It moves the bits on and off and
handles the bit timing. For different carriers and cables, this layer will be different.

The other sublayer of the physical layer is the TC (Transmission Convergence) sublayer. When cells are
transmitted, the TC layer sends them as a string of bits to the PMD layer. Doing this is easy. At the other end,
the TC sublayer gets a pure incoming bit stream from the PMD sublayer. Its job is to convert this bit stream into
a cell stream for the ATM layer. It handles all the issues related to telling where cells begin and end in the bit
stream. In the ATM model, this functionality is in the physical layer. In the OSI model and in pretty much all other
networks, the job of framing, that is, turning a raw bit stream into a sequence of frames or cells, is the data link
layer's task.

As we mentioned earlier, the ATM layer manages cells, including their generation and transport. Most of the
interesting aspects of ATM are located here. It is a mixture of the OSI data link and network layers; it is not split
into sublayers.

The AAL layer is split into a SAR (Segmentation And Reassembly) sublayer and a CS (Convergence Sublayer).
The lower sublayer breaks up packets into cells on the transmission side and puts them back together again at
the destination. The upper sublayer makes it possible to have ATM systems offer different kinds of services to
different applications (e.g., file transfer and video on demand have different requirements concerning error
handling, timing, etc.).

As it is probably mostly downhill for ATM from now on, we will not discuss it further in this book. Nevertheless,
since it has a substantial installed base, it will probably be around for at least a few more years. For more
information about ATM, see (Dobrowski and Grise, 2001; and Gadecki and Heckart, 1997).

1.5.3 Ethernet

Both the Internet and ATM were designed for wide area networking. However, many companies, universities,
and other organizations have large numbers of computers that must be connected. This need gave rise to the
local area network. In this section we will say a little bit about the most popular LAN, Ethernet.

The story starts out in pristine Hawaii in the early 1970s. In this case, "pristine" can be interpreted as "not having
a working telephone system." While not being interrupted by the phone all day long makes life more pleasant for
vacationers, it did not make life more pleasant for researcher Norman Abramson and his colleagues at the
University of Hawaii who were trying to connect users on remote islands to the main computer in Honolulu.
Stringing their own cables under the Pacific Ocean was not in the cards, so they looked for a different solution.

The one they found was short-range radios. Each user terminal was equipped with a small radio having two
frequencies: upstream (to the central computer) and downstream (from the central computer). When the user
wanted to contact the computer, it just transmitted a packet containing the data in the upstream channel. If no
one else was transmitting at that instant, the packet probably got through and was acknowledged on the
downstream channel. If there was contention for the upstream channel, the terminal noticed the lack of
acknowledgement and tried again. Since there was only one sender on the downstream channel (the central
computer), there were never collisions there. This system, called ALOHANET, worked fairly well under
conditions of low traffic but bogged down badly when the upstream traffic was heavy.

About the same time, a student named Bob Metcalfe got his bachelor's degree at M.1.T. and then moved up the
river to get his Ph.D. at Harvard. During his studies, he was exposed to Abramson's work. He became so
interested in it that after graduating from Harvard, he decided to spend the summer in Hawaii working with
Abramson before starting work at Xerox PARC (Palo Alto Research Center). When he got to PARC, he saw that
the researchers there had designed and built what would later be called personal computers. But the machines
were isolated. Using his knowledge of Abramson's work, he, together with his colleague David Boggs, designed
and implemented the first local area network (Metcalfe and Boggs, 1976).

They called the system Ethernet after the luminiferous ether, through which electromagnetic radiation was once
thought to propagate. (When the 19th century British physicist James Clerk Maxwell discovered that
electromagnetic radiation could be described by a wave equation, scientists assumed that space must be filled



with some ethereal medium in which the radiation was propagating. Only after the famous Michelson-Morley
experiment in 1887 did physicists discover that electromagnetic radiation could propagate in a vacuum.)

The transmission medium here was not a vacuum, but a thick coaxial cable (the ether) up to 2.5 km long (with
repeaters every 500 meters). Up to 256 machines could be attached to the system via transceivers screwed onto
the cable. A cable with multiple machines attached to it in parallel is called a multidrop cable. The system ran at
2.94 Mbps. A sketch of its architecture is given in Fig. 1-34. Ethernet had a major improvement over
ALOHANET: before transmitting, a computer first listened to the cable to see if someone else was already
transmitting. If so, the computer held back until the current transmission finished. Doing so avoided interfering
with existing transmissions, giving a much higher efficiency. ALOHANET did not work like this because it was
impossible for a terminal on one island to sense the transmission of a terminal on a distant island. With a single

cable, this problem does not exist.

Despite the computer listening before transmitting, a problem still arises: what happens if two or more computers
all wait until the current transmission completes and then all start at once? The solution is to have each
computer listen during its own transmission and if it detects interference, jam the ether to alert all senders. Then
back off and wait a random time before retrying. If a second collision happens, the random waiting time is
doubled, and so on, to spread out the competing transmissions and give one of them a chance to go first.

Figure 1-34. Architecture of the original Ethernet.
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The Xerox Ethernet was so successful that DEC, Intel, and Xerox drew up a standard in 1978 for a 10-Mbps
Ethernet, called the DIX standard. With two minor changes, the DIX standard became the IEEE 802.3 standard
in 1983.

Unfortunately for Xerox, it already had a history of making seminal inventions (such as the personal computer)
and then failing to commercialize on them, a story told in Fumbling the Future (Smith and Alexander, 1988).
When Xerox showed little interest in doing anything with Ethernet other than helping standardize it, Metcalfe
formed his own company, 3Com, to sell Ethernet adapters for PCs. It has sold over 100 million of them.

Ethernet continued to develop and is still developing. New versions at 100 Mbps, 1000 Mbps, and still higher
have come out. Also the cabling has improved, and switching and other features have been added. We will
discuss Ethernet in detail in Chap. 4.

In passing, it is worth mentioning that Ethernet (IEEE 802.3) is not the only LAN standard. The committee also
standardized a token bus (802.4) and a token ring (802.5). The need for three more-or-less incompatible
standards has little to do with technology and everything to do with politics. At the time of standardization,
General Motors was pushing a LAN in which the topology was the same as Ethernet (a linear cable) but
computers took turns in transmitting by passing a short packet called a token from computer to computer. A
computer could only send if it possessed the token, thus avoiding collisions. General Motors announced that this
scheme was essential for manufacturing cars and was not prepared to budge from this position. This
announcement notwithstanding, 802.4 has basically vanished from sight.

Similarly, IBM had its own favorite: its proprietary token ring. The token was passed around the ring and
whichever computer held the token was allowed to transmit before putting the token back on the ring. Unlike
802.4, this scheme, standardized as 802.5, is still in use at some IBM sites, but virtually nowhere outside of IBM
sites. However, work is progressing on a gigabit version (802.5v), but it seems unlikely that it will ever catch up
with Ethernet. In short, there was a war between Ethernet, token bus, and token ring, and Ethernet won, mostly
because it was there first and the challengers were not as good.



1.5.4 Wireless LANs: 802.11

Almost as soon as notebook computers appeared, many people had a dream of walking into an office and
magically having their notebook computer be connected to the Internet. Consequently, various groups began
working on ways to accomplish this goal. The most practical approach is to equip both the office and the
notebook computers with short-range radio transmitters and receivers to allow them to communicate. This work
rapidly led to wireless LANs being marketed by a variety of companies.

The trouble was that no two of them were compatible. This proliferation of standards meant that a computer
equipped with a brand X radio would not work in a room equipped with a brand Y base station. Finally, the
industry decided that a wireless LAN standard might be a good idea, so the IEEE committee that standardized
the wired LANs was given the task of drawing up a wireless LAN standard. The standard it came up with was
named 802.11. A common slang name for it is WiFi. It is an important standard and deserves respect, so we will
call it by its proper name, 802.11.

The proposed standard had to work in two modes:

1. Inthe presence of a base station.
2. Inthe absence of a base station.

In the former case, all communication was to go through the base station, called an access point in 802.11
terminology. In the latter case, the computers would just send to one another directly. This mode is now
sometimes called ad hoc networking. A typical example is two or more people sitting down together in a room
not equipped with a wireless LAN and having their computers just communicate directly. The two modes are
illustrated in Fig. 1-35.

Figure 1-35. (a) Wireless networking with a base station. (b) Ad hoc networking.

| Base | To wired network
station

A /N

AR
e -

(a) (b)

The first decision was the easiest: what to call it. All the other LAN standards had numbers like 802.1, 802.2,
802.3, up to 802.10, so the wireless LAN standard was dubbed 802.11. The rest was harder.

In particular, some of the many challenges that had to be met were: finding a suitable frequency band that was
available, preferably worldwide; dealing with the fact that radio signals have a finite range; ensuring that users'
privacy was maintained; taking limited battery life into account; worrying about human safety (do radio waves
cause cancer?); understanding the implications of computer mobility; and finally, building a system with enough
bandwidth to be economically viable.

At the time the standardization process started (mid-1990s), Ethernet had already come to dominate local area
networking, so the committee decided to make 802.11 compatible with Ethernet above the data link layer. In
particular, it should be possible to send an IP packet over the wireless LAN the same way a wired computer sent
an IP packet over Ethernet. Nevertheless, in the physical and data link layers, several inherent differences with
Ethernet exist and had to be dealt with by the standard.

First, a computer on Ethernet always listens to the ether before transmitting. Only if the ether is idle does the
computer begin transmitting. With wireless LANSs, that idea does not work so well. To see why, examine Fig. 1-
36. Suppose that computer A is transmitting to computer B, but the radio range of A's transmitter is too short to



reach computer C. If C wants to transmit to B it can listen to the ether before starting, but the fact that it does not
hear anything does not mean that its transmission will succeed. The 802.11 standard had to solve this problem.

Figure 1-36. The range of a single radio may not cover the entire system.
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The second problem that had to be solved is that a radio signal can be reflected off solid objects, so it may be
received multiple times (along multiple paths). This interference results in what is called multipath fading.

The third problem is that a great deal of software is not aware of mobility. For example, many word processors
have a list of printers that users can choose from to print a file. When the computer on which the word processor
runs is taken into a new environment, the built-in list of printers becomes invalid.

The fourth problem is that if a notebook computer is moved away from the ceiling-mounted base station it is
using and into the range of a different base station, some way of handing it off is needed. Although this problem
occurs with cellular telephones, it does not occur with Ethernet and needed to be solved. In particular, the
network envisioned consists of multiple cells, each with its own base station, but with the base stations
connected by Ethernet, as shown in Fig. 1-37. From the outside, the entire system should look like a single
Ethernet. The connection between the 802.11 system and the outside world is called a portal.

Figure 1-37. A multicell 802.11 network.
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After some work, the committee came up with a standard in 1997 that addressed these and other concerns. The
wireless LAN it described ran at either 1 Mbps or 2 Mbps. Almost immediately, people complained that it was too
slow, so work began on faster standards. A split developed within the committee, resulting in two new standards
in 1999. The 802.11a standard uses a wider frequency band and runs at speeds up to 54 Mbps. The 802.11b
standard uses the same frequency band as 802.11, but uses a different modulation technique to achieve 11
Mbps. Some people see this as psychologically important since 11 Mbps is faster than the original wired
Ethernet. It is likely that the original 1-Mbps 802.11 will die off quickly, but it is not yet clear which of the new
standards will win out.

Portal

To make matters even more complicated than they already were, the 802 committee has come up with yet
another variant, 802.11g, which uses the modulation technique of 802.11a but the frequency band of 802.11b.
We will come back to 802.11 in detail in Chap. 4.



That 802.11 is going to cause a revolution in computing and Internet access is how beyond any doubt. Airports,
train stations, hotels, shopping malls, and universities are rapidly installing it. Even upscale coffee shops are
installing 802.11 so that the assembled yuppies can surf the Web while drinking their lattes. It is likely that
802.11 will do to the Internet what notebook computers did to computing: make it mobile.

1.6 Network Standardization

Many network vendors and suppliers exist, each with its own ideas of how things should be done. Without
coordination, there would be complete chaos, and users would get nothing done. The only way out is to agree
on some network standards.

Not only do standards allow different computers to communicate, but they also increase the market for products
adhering to the standard. A larger market leads to mass production, economies of scale in manufacturing, VLSI
implementations, and other benefits that decrease price and further increase acceptance. In the following
sections we will take a quick look at the important, but little-known, world of international standardization.

Standards fall into two categories: de facto and de jure. De facto (Latin for "from the fact") standards are those
that have just happened, without any formal plan. The IBM PC and its successors are de facto standards for
small-office and home computers because dozens of manufacturers chose to copy IBM's machines very closely.
Similarly, UNIX is the de facto standard for operating systems in university computer science departments.

De jure (Latin for "by law") standards, in contrast, are formal, legal standards adopted by some authorized
standardization body. International standardization authorities are generally divided into two classes: those
established by treaty among national governments, and those comprising voluntary, nontreaty organizations. In
the area of computer network standards, there are several organizations of each type, which are discussed
below.

1.6.1 Who's Who in the Telecommunications World

The legal status of the world's telephone companies varies considerably from country to country. At one extreme
is the United States, which has 1500 separate, privately owned telephone companies. Before it was broken up in
1984, AT&T, at that time the world's largest corporation, completely dominated the scene. It provided telephone
service to about 80 percent of America's telephones, spread throughout half of its geographical area, with all the
other companies combined servicing the remaining (mostly rural) customers. Since the breakup, AT&T continues
to provide long-distance service, although now in competition with other companies. The seven Regional Bell
Operating Companies that were split off from AT&T and numerous independents provide local and cellular
telephone service. Due to frequent mergers and other changes, the industry is in a constant state of flux.

Companies in the United States that provide communication services to the public are called common carriers.
Their offerings and prices are described by a document called a tariff, which must be approved by the Federal
Communications Commission for the interstate and international traffic and by the state public utilities
commissions for intrastate traffic.

At the other extreme are countries in which the national government has a complete monopoly on all
communication, including the mail, telegraph, telephone, and often, radio and television. Most of the world falls
in this category. In some cases the telecommunication authority is a nationalized company, and in others it is
simply a branch of the government, usually known as the PTT (Post, Telegraph & Telephone administration).
Worldwide, the trend is toward liberalization and competition and away from government monopoly. Most
European countries have now (partially) privatized their PTTs, but elsewhere the process is still slowly gaining
steam.

With all these different suppliers of services, there is clearly a need to provide compatibility on a worldwide scale
to ensure that people (and computers) in one country can call their counterparts in another one. Actually, this
need has existed for a long time. In 1865, representatives from many European governments met to form the
predecessor to today's ITU (International Telecommunication Union). Its job was standardizing international
telecommunications, which in those days meant telegraphy. Even then it was clear that if half the countries used
Morse code and the other half used some other code, there was going to be a problem. When the telephone



was put into international service, ITU took over the job of standardizing telephony (pronounced te-LEF-ony) as
well. In 1947, ITU became an agency of the United Nations.

ITU has three main sectors:

1. Radiocommunications Sector (ITU-R).
2. Telecommunications Standardization Sector (ITU-T).
3. Development Sector (ITU-D).

ITU-R is concerned with allocating radio frequencies worldwide to the competing interest groups. We will focus
primarily on ITU-T, which is concerned with telephone and data communication systems. From 1956 to 1993,
ITU-T was known as CCITT, an acronym for its French name: Comité Consultatif International Télégraphique et
Téléphonique. On March 1, 1993, CCITT was reorganized to make it less bureaucratic and renamed to reflect its
new role. Both ITU-T and CCITT issued recommendations in the area of telephone and data communications.
One still frequently runs into CCITT recommendations, such as CCITT X.25, although since 1993
recommendations bear the ITU-T label.

ITU-T has four classes of members:

National governments.
Sector members.
Associate members.
Regulatory agencies.

rPONPE

ITU-T has about 200 governmental members, including almost every member of the United Nations. Since the
United States does not have a PTT, somebody else had to represent it in ITU-T. This task fell to the State
Department, probably on the grounds that ITU-T had to do with foreign countries, the State Department's
specialty. There are approximately 500 sector members, including telephone companies (e.g., AT&T, Vodafone,
WorldCom), telecom equipment manufacturers (e.g., Cisco, Nokia, Nortel), computer vendors (e.g., Compaq,
Sun, Toshiba), chip manufacturers (e.g., Intel, Motorola, Tl), media companies (e.g., AOL Time Warner, CBS,
Sony), and other interested companies (e.g., Boeing, Samsung, Xerox). Various nonprofit scientific
organizations and industry consortia are also sector members (e.g., IFIP and IATA). Associate members are
smaller organizations that are interested in a particular Study Group. Regulatory agencies are the folks who
watch over the telecom business, such as the U.S. Federal Communications Commission.

ITU-T's task is to make technical recommendations about telephone, telegraph, and data communication
interfaces. These often become internationally recognized standards, for example, V.24 (also known as EIA RS-
232 in the United States), which specifies the placement and meaning of the various pins on the connector used
by most asynchronous terminals and external modems.

It should be noted that ITU-T recommendations are technically only suggestions that governments can adopt or
ignore, as they wish (because governments are like 13-year-old boys—they do not take kindly to being given
orders). In practice, a country that wishes to adopt a telephone standard different from that used by the rest of
the world is free to do so, but at the price of cutting itself off from everyone else. This might work for North Korea,
but elsewhere it would be a real problem. The fiction of calling ITU-T standards "recommendations" was and is
necessary to keep nationalist forces in many countries placated.

The real work of ITU-T is done in its 14 Study Groups, often as large as 400 people. There are currently 14
Study Groups, covering topics ranging from telephone billing to multimedia services. In order to make it possible
to get anything at all done, the Study Groups are divided into Working Parties, which are in turn divided into
Expert Teams, which are in turn divided into ad hoc groups. Once a bureaucracy, always a bureaucracy.

Despite all this, ITU-T actually gets things done. Since its inception, it has produced close to 3000
recommendations occupying about 60,000 pages of paper. Many of these are widely used in practice. For
example, the popular V.90 56-kbps modem standard is an ITU recommendation.



As telecommunications completes the transition started in the 1980s from being entirely national to being entirely
global, standards will become increasingly important, and more and more organizations will want to become
involved in setting them. For more information about ITU, see (Irmer, 1994).

1.6.2 Who's Who in the International Standards World

International standards are produced and published by ISO (International Standards Organization [T]), a
voluntary nontreaty organization founded in 1946. Its members are the national standards organizations of the
89 member countries. These members include ANSI (U.S.), BSI (Great Britain), AFNOR (France), DIN
(Germany), and 85 others.

.1_
U1 For the purist, ISO's true name is the International Organization for Standardization.

ISO issues standards on a truly vast number of subjects, ranging from nuts and bolts (literally) to telephone pole
coatings [not to mention cocoa beans (ISO 2451), fishing nets (ISO 1530), women's underwear (ISO 4416) and
quite a few other subjects one might not think were subject to standardization]. Over 13,000 standards have
been issued, including the OSI standards. ISO has almost 200 Technical Committees, numbered in the order of
their creation, each dealing with a specific subject. TC1 deals with the nuts and bolts (standardizing screw thread
pitches). TC97 deals with computers and information processing. Each TC has subcommittees (SCs) divided
into working groups (WGS).

The real work is done largely in the WGs by over 100,000 volunteers worldwide. Many of these "volunteers" are
assigned to work on ISO matters by their employers, whose products are being standardized. Others are
government officials keen on having their country's way of doing things become the international standard.
Academic experts also are active in many of the WGs.

On issues of telecommunication standards, ISO and ITU-T often cooperate (ISO is a member of ITU-T) to avoid
the irony of two official and mutually incompatible international standards.

The U.S. representative in ISO is ANSI (American National Standards Institute), which despite its name, is a
private, nongovernmental, nonprofit organization. Its members are manufacturers, common carriers, and other
interested parties. ANSI standards are frequently adopted by ISO as international standards.

The procedure used by ISO for adopting standards has been designed to achieve as broad a consensus as
possible. The process begins when one of the national standards organizations feels the need for an
international standard in some area. A working group is then formed to come up with a CD (Committee Draft).
The CD is then circulated to all the member bodies, which get 6 months to criticize it. If a substantial majority
approves, a revised document, called a DIS (Draft International Standard) is produced and circulated for
comments and voting. Based on the results of this round, the final text of the IS (International Standard) is
prepared, approved, and published. In areas of great controversy, a CD or DIS may have to go through several
versions before acquiring enough votes, and the whole process can take years.

NIST (National Institute of Standards and Technology) is part of the U.S. Department of Commerce. It used to be
the National Bureau of Standards. It issues standards that are mandatory for purchases made by the U.S.
Government, except for those of the Department of Defense, which has its own standards.

Another major player in the standards world is IEEE (Institute of Electrical and Electronics Engineers), the
largest professional organization in the world. In addition to publishing scores of journals and running hundreds
of conferences each year, IEEE has a standardization group that develops standards in the area of electrical
engineering and computing. IEEE's 802 committee has standardized many kinds of LANs. We will study some of
its output later in this book. The actual work is done by a collection of working groups, which are listed in Fig. 1-
38. The success rate of the various 802 working groups has been low; having an 802.x humber is no guarantee
of success. But the impact of the success stories (especially 802.3 and 802.11) has been enormous.

Figure 1-38. The 802 working grou]Es. The important ones are marked with *. The ones marked with lare
hibernating. The one marked with tgave up and disbanded itself.



Number Topic

BO2.1 - Overview and architecture of LANs

goz2 L ' Logical link control

8023 ° Ethemet

B02.4 | | Token bus (was briefly used in manufacturing plants)
802.5 Taken ring (IBM's entry into the LAN world)

B2.6 o _ Dual queue dual bus (early metropalitan area netwaork)
go2.7 L | Technical advisory group on broadband technologies
B02.8 t Technical advisory group on fiber optic technologies
8029 L Isochronous LANs (for real-time applications)

B02.10 L | Virlual LANs and security

802.11°  Wireless LANs

go2.12 L _ Demand pricrity (Hewlett-Packard's AnyLAN)

802.13 | Unlucky number. Nobody wanted it

802.14 L Cable modems (defunct: an industry consortium got there first)
B02.15"  Personal area networks (Bluetooth)

80216 * | Broadband wirgless

802.17  Resilient packet ring

1.6.3 Who's Who in the Internet Standards World

The worldwide Internet has its own standardization mechanisms, very different from those of ITU-T and ISO. The
difference can be crudely summed up by saying that the people who come to ITU or ISO standardization
meetings wear suits. The people who come to Internet standardization meetings wear jeans (except when they
meet in San Diego, when they wear shorts and T-shirts).

ITU-T and ISO meetings are populated by corporate officials and government civil servants for whom
standardization is their job. They regard standardization as a Good Thing and devote their lives to it. Internet
people, on the other hand, prefer anarchy as a matter of principle. However, with hundreds of millions of people
all doing their own thing, little communication can occur. Thus, standards, however regrettable, are sometimes
needed.

When the ARPANET was set up, DoD created an informal committee to oversee it. In 1983, the committee was
renamed the IAB (Internet Activities Board) and was given a slighter broader mission, namely, to keep the
researchers involved with the ARPANET and the Internet pointed more-or-less in the same direction, an activity
not unlike herding cats. The meaning of the acronym "IAB" was later changed to Internet Architecture Board.

Each of the approximately ten members of the IAB headed a task force on some issue of importance. The I1AB
met several times a year to discuss results and to give feedback to the DoD and NSF, which were providing
most of the funding at this time. When a standard was needed (e.g., a new routing algorithm), the IAB members
would thrash it out and then announce the change so the graduate students who were the heart of the software
effort could implement it. Communication was done by a series of technical reports called RFCs (Request For
Comments). RFCs are stored on-line and can be fetched by anyone interested in them from www.ietf.org/rfc.
They are numbered in chronological order of creation. Over 3000 now exist. We will refer to many RFCs in this
book.

By 1989, the Internet had grown so large that this highly informal style no longer worked. Many vendors by then
offered TCP/IP products and did not want to change them just because ten researchers had thought of a better
idea. In the summer of 1989, the IAB was reorganized again. The researchers were moved to the IRTF (Internet
Research Task Force), which was made subsidiary to 1AB, along with the IETF (Internet Engineering Task
Force). The IAB was repopulated with people representing a broader range of organizations than just the
research community. It was initially a self-perpetuating group, with members serving for a 2-year term and new
members being appointed by the old ones. Later, the Internet Society was created, populated by people



interested in the Internet. The Internet Society is thus in a sense comparable to ACM or IEEE. It is governed by
elected trustees who appoint the IAB members.

The idea of this split was to have the IRTF concentrate on long-term research while the IETF dealt with short-
term engineering issues. The IETF was divided up into working groups, each with a specific problem to solve.
The chairmen of these working groups initially met as a steering committee to direct the engineering effort. The
working group topics include new applications, user information, OSI integration, routing and addressing,
security, network management, and standards. Eventually, so many working groups were formed (more than 70)
that they were grouped into areas and the area chairmen met as the steering committee.

In addition, a more formal standardization process was adopted, patterned after ISOs. To become a Proposed
Standard, the basic idea must be completely explained in an RFC and have sufficient interest in the community
to warrant consideration. To advance to the Draft Standard stage, a working implementation must have been
rigorously tested by at least two independent sites for at least 4 months. If the 1AB is convinced that the idea is
sound and the software works, it can declare the RFC to be an Internet Standard. Some Internet Standards have
become DoD standards (MIL-STD), making them mandatory for DoD suppliers. David Clark once made a now-
famous remark about Internet standardization consisting of "rough consensus and running code."

1.7 Metric Units

To avoid any confusion, it is worth stating explicitly that in this book, as in computer science in general, metric
units are used instead of traditional English units (the furlong-stone-fortnight system). The principal metric
prefixes are listed in Fig. 1-39. The prefixes are typically abbreviated by their first letters, with the units greater
than 1 capitalized (KB, MB, etc.). One exception (for historical reasons) is kbps for kilobits/sec. Thus, a 1-Mbps
communication line transmits 10° bits/sec and a 100 psec (or 100 ps) clock ticks every 10 seconds. Since milli
and micro both begin with the letter "m," a choice had to be made. Normally, "m" is for milli and "u" (the Greek
letter mu) is for micro.

Figure 1-39. The principal metric prefixes.

: Exp. [ Explicit - Prefix . Exp. . Explicit [ Prefix
10° | 0.001 | mili 107 1,000 | Kilo

- 10°* . 0.000001 - micre . 108 . 1,000,000 . Maga

- 10°% I 0.000000001 - nano “}u 1,000,000,000 | Giga

: 107" | 0.000000000001 pico | 107 | 1,000,000,000,000 | Tera |
10778 I 0. 000000000000001 famto 10'% 1.,000,000,000,000,000  Paola

[ 107" | 0.6000000000000000001 | atto 10" | 1,000,000,000,000,000,000  Exa

: 10" I 0.0000000000000000000001 Zeplo | 'I':I‘P‘1 | 1,000,000, 000,000,000,000,000 Lella

10 . 0.0000000000000000000000001 | yocto  10°F* | 1,000,000,000,000,000,000,000,000 | Yotta

It is also worth pointing out that for measuring memory, disk, file, and database sizes, in common industry
practice, the units have slightly different meanings. There, kilo means 2'° (1024) rather than 10 (1000) because
memories are always a power of two. Thus, a 1-KB memory contains 1024 bytes, not 1000 bytes. Similarly, a 1-
MB memory contains 2°° (1,048,576) bytes, a 1-GB memory contains 2% (1,073,741,824) bytes, and a 1-TB
database contains 2*° (1,099,511,627,776) bytes. However, a 1-kbps communication line transmits 1000 bits per
second and a 10-Mbps LAN runs at 10,000,000 bits/sec because these speeds are not powers of two.
Unfortunately, many people tend to mix up these two systems, especially for disk sizes. To avoid ambiguity, in
this book, we will use the symbols KB, MB, and GB for 2'°, 2°, and 2*° bytes, respectively, and the symbols
kbps, Mbps, and Gbps for 10°, 10°, and 10° bits/sec, respectively.

1.8 Outline of the Rest of the Book

This book discusses both the principles and practice of computer networking. Most chapters start with a
discussion of the relevant principles, followed by a number of examples that illustrate these principles. These
examples are usually taken from the Internet and wireless networks since these are both important and very
different. Other examples will be given where relevant.



The book is structured according to the hybrid model of Fig. 1-24. Starting with Chap. 2, we begin working our
way up the protocol hierarchy beginning at the bottom. The second chapter provides some background in the
field of data communication. It covers wired, wireless, and satellite transmission systems. This material is
concerned with the physical layer, although we cover only the architectural rather than the hardware aspects.
Several examples of the physical layer, such as the public switched telephone network, mobile telephones, and
the cable television network are also discussed.

Chapter 3 discusses the data link layer and its protocols by means of a number of increasingly complex
examples. The analysis of these protocols is also covered. After that, some important real-world protocols are
discussed, including HDLC (used in low- and medium-speed networks) and PPP (used in the Internet).

Chapter 4 concerns the medium access sublayer, which is part of the data link layer. The basic question it deals
with is how to determine who may use the network next when the network consists of a single shared channel,
as in most LANs and some satellite networks. Many examples are given from the areas of wired LANs, wireless
LANs (especially Ethernet), wireless MANS, Bluetooth, and satellite networks. Bridges and data link switches,
which are used to connect LANS, are also discussed here.

Chapter 5 deals with the network layer, especially routing, with many routing algorithms, both static and
dynamic, being covered. Even with good routing algorithms though, if more traffic is offered than the network can
handle, congestion can develop, so we discuss congestion and how to prevent it. Even better than just
preventing congestion is guaranteeing a certain quality of service. We will discuss that topic as well here.
Connecting heterogeneous networks to form internetworks leads to numerous problems that are discussed here.
The network layer in the Internet is given extensive coverage.

Chapter 6 deals with the transport layer. Much of the emphasis is on connection-oriented protocols, since many
applications need these. An example transport service and its implementation are discussed in detail. The actual
code is given for this simple example to show how it could be implemented. Both Internet transport protocols,
UDP and TCP, are covered in detail, as are their performance issues. Issues concerning wireless networks are
also covered.

Chapter 7 deals with the application layer, its protocols and applications. The first topic is DNS, which is the
Internet's telephone book. Next comes e-mail, including a discussion of its protocols. Then we move onto the
Web, with detailed discussions of the static content, dynamic content, what happens on the client side, what
happens on the server side, protocols, performance, the wireless Web, and more. Finally, we examine
networked multimedia, including streaming audio, Internet radio, and video on demand.

Chapter 8 is about network security. This topic has aspects that relate to all layers, so it is easiest to treat it after
all the layers have been thoroughly explained. The chapter starts with an introduction to cryptography. Later, it
shows how cryptography can be used to secure communication, e-mail, and the Web. The book ends with a
discussion of some areas in which security hits privacy, freedom of speech, censorship, and other social issues
collide head on.

Chapter 9 contains an annotated list of suggested readings arranged by chapter. It is intended to help those
readers who would like to pursue their study of networking further. The chapter also has an alphabetical
bibliography of all references cited in this book.

The author's Web site at Prentice Hall:

http://www.prenhall.com/tanenbaum

has a page with links to many tutorials, FAQs, companies, industry consortia, professional organizations,
standards organizations, technologies, papers, and more.

1.9 Summary

Computer networks can be used for numerous services, both for companies and for individuals. For companies,
networks of personal computers using shared servers often provide access to corporate information. Typically



they follow the client-server model, with client workstations on employee desktops accessing powerful servers in
the machine room. For individuals, networks offer access to a variety of information and entertainment
resources. Individuals often access the Internet by calling up an ISP using a modem, although increasingly many
people have a fixed connection at home. An up-and-coming area is wireless networking with new applications
such as mobile e-mail access and m-commerce.

Roughly speaking, networks can be divided up into LANs, MANs, WANSs, and internetworks, with their own
characteristics, technologies, speeds, and niches. LANs cover a building and operate at high speeds. MANs
cover a city, for example, the cable television system, which is now used by many people to access the Internet.
WANSs cover a country or continent. LANs and MANs are unswitched (i.e., do not have routers); WANs are
switched. Wireless networks are becoming extremely popular, especially wireless LANs. Networks can be
interconnected to form internetworks.

Network software consists of protocols, which are rules by which processes communicate. Protocols are either
connectionless or connection-oriented. Most networks support protocol hierarchies, with each layer providing
services to the layers above it and insulating them from the details of the protocols used in the lower layers.
Protocol stacks are typically based either on the OSI model or on the TCP/IP model. Both have network,
transport, and application layers, but they differ on the other layers. Design issues include multiplexing, flow
control, error control, and others. Much of this book deals with protocols and their design.

Networks provide services to their users. These services can be connection-oriented or connectionless. In some
networks, connectionless service is provided in one layer and connection-oriented service is provided in the
layer above it.

Well-known networks include the Internet, ATM networks, Ethernet, and the IEEE 802.11 wireless LAN. The
Internet evolved from the ARPANET, to which other networks were added to form an internetwork. The present
Internet is actually a collection of many thousands of networks, rather than a single network. What characterizes
it is the use of the TCP/IP protocol stack throughout. ATM is widely used inside the telephone system for long-
haul data traffic. Ethernet is the most popular LAN and is present in most large companies and universities.
Finally, wireless LANs at surprisingly high speeds (up to 54 Mbps) are beginning to be widely deployed.

To have multiple computers talk to each other requires a large amount of standardization, both in the hardware
and software. Organizations such as the ITU-T, ISO, IEEE, and IAB manage different parts of the
standardization process.

Problems

1. Imagine that you have trained your St. Bernard, Bernie, to carry a box of three 8mm tapes instead of a
flask of brandy. (When your disk fills up, you consider that an emergency.) These tapes each contain 7
gigabytes. The dog can travel to your side, wherever you may be, at 18 km/hour. For what range of
distances does Bernie have a higher data rate than a transmission line whose data rate (excluding
overhead) is 150 Mbps?

2. An alternative to a LAN is simply a big timesharing system with terminals for all users. Give two
advantages of a client-server system using a LAN.

3. The performance of a client-server system is influenced by two network factors: the bandwidth of the
network (how many bits/sec it can transport) and the latency (how many seconds it takes for the first bit
to get from the client to the server). Give an example of a network that exhibits high bandwidth and high
latency. Then give an example of one with low bandwidth and low latency.

4. Besides bandwidth and latency, what other parameter is needed to give a good characterization of the
quality of service offered by a network used for digitized voice traffic?

5. A factor in the delay of a store-and-forward packet-switching system is how long it takes to store and
forward a packet through a switch. If switching time is 10 usec, is this likely to be a major factor in the
response of a client-server system where the client is in New York and the server is in California?
Assume the propagation speed in copper and fiber to be 2/3 the speed of light in vacuum.

6. A client-server system uses a satellite network, with the satellite at a height of 40,000 km. What is the
best-case delay in response to a request?

7. In the future, when everyone has a home terminal connected to a computer network, instant public
referendums on important pending legislation will become possible. Ultimately, existing legislatures
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could be eliminated, to let the will of the people be expressed directly. The positive aspects of such a
direct democracy are fairly obvious; discuss some of the negative aspects.
A collection of five routers is to be connected in a point-to-point subnet. Between each pair of routers,
the designers may put a high-speed line, a medium-speed line, a low-speed line, or no line. If it takes
100 ms of computer time to generate and inspect each topology, how long will it take to inspect all of
them?
A group of 2" - 1 routers are interconnected in a centralized binary tree, with a router at each tree node.
Router i communicates with router j by sending a message to the root of the tree. The root then sends
the message back down to j. Derive an approximate expression for the mean number of hops per
message for large n, assuming that all router pairs are equally likely.
A disadvantage of a broadcast subnet is the capacity wasted when multiple hosts attempt to access the
channel at the same time. As a simplistic example, suppose that time is divided into discrete slots, with
each of the n hosts attempting to use the channel with probability p during each slot. What fraction of the
slots are wasted due to collisions?
What are two reasons for using layered protocols?
The president of the Specialty Paint Corp. gets the idea to work with a local beer brewer to produce an
invisible beer can (as an anti-litter measure). The president tells her legal department to look into it, and
they in turn ask engineering for help. As a result, the chief engineer calls his counterpart at the other
company to discuss the technical aspects of the project. The engineers then report back to their
respective legal departments, which then confer by telephone to arrange the legal aspects. Finally, the
two corporate presidents discuss the financial side of the deal. Is this an example of a multilayer protocol
in the sense of the OSI model?
What is the principal difference between connectionless communication and connection-oriented
communication?
Two networks each provide reliable connection-oriented service. One of them offers a reliable byte
stream and the other offers a reliable message stream. Are these identical? If so, why is the distinction
made? If not, give an example of how they differ.
What does "negotiation” mean when discussing network protocols? Give an example.
In Fig. 1-19, a service is shown. Are any other services implicit in this figure? If so, where? If not, why
not?
In some networks, the data link layer handles transmission errors by requesting damaged frames to be
retransmitted. If the probability of a frame's being damaged is p, what is the mean number of
transmissions required to send a frame? Assume that acknowledgements are never lost.
Which of the OSI layers handles each of the following:

a. (a) Dividing the transmitted bit stream into frames.

b. (b) Determining which route through the subnet to use.
If the unit exchanged at the data link level is called a frame and the unit exchanged at the network level
is called a packet, do frames encapsulate packets or do packets encapsulate frames? Explain your
answer.
A system has an n-layer protocol hierarchy. Applications generate messages of length M bytes. At each
of the layers, an h-byte header is added. What fraction of the network bandwidth is filled with headers?
List two ways in which the OSI reference model and the TCP/IP reference model are the same. Now list
two ways in which they differ.
What is the main difference between TCP and UDP?
The subnet of Fig. 1-25(b) was designed to withstand a nuclear war. How many bombs would it take to
partition the nodes into two disconnected sets? Assume that any bomb wipes out a node and all of the
links connected to it.
The Internet is roughly doubling in size every 18 months. Although no one really knows for sure, one
estimate put the number of hosts on it at 100 million in 2001. Use these data to compute the expected
number of Internet hosts in the year 2010. Do you believe this? Explain why or why not.
When a file is transferred between two computers, two acknowledgement strategies are possible. In the
first one, the file is chopped up into packets, which are individually acknowledged by the receiver, but
the file transfer as a whole is not acknowledged. In the second one, the packets are not acknowledged
individually, but the entire file is acknowledged when it arrives. Discuss these two approaches.
Why does ATM use small, fixed-length cells?
How long was a bit on the original 802.3 standard in meters? Use a transmission speed of 10 Mbps and
assume the propagation speed in coax is 2/3 the speed of light in vacuum.
An image is 1024 x 768 pixels with 3 bytes/pixel. Assume the image is uncompressed. How long does it
take to transmit it over a 56-kbps modem channel? Over a 1-Mbps cable modem? Over a 10-Mbps
Ethernet? Over 100-Mbps Ethernet?
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Ethernet and wireless networks have some similarities and some differences. One property of Ethernet
is that only one frame at a time can be transmitted on an Ethernet. Does 802.11 share this property with
Ethernet? Discuss your answer.

Wireless networks are easy to install, which makes them inexpensive since installation costs usually far
overshadow equipment costs. Nevertheless, they also have some disadvantages. Name two of them.
List two advantages and two disadvantages of having international standards for network protocols.
When a system has a permanent part and a removable part (such as a CD-ROM drive and the CD-
ROM), it is important that the system be standardized, so that different companies can make both the
permanent and removable parts and everything still works together. Give three examples outside the
computer industry where such international standards exist. Now give three areas outside the computer
industry where they do not exist.

Make a list of activities that you do every day in which computer networks are used. How would your life
be altered if these networks were suddenly switched off?

Find out what networks are used at your school or place of work. Describe the network types,
topologies, and switching methods used there.

The ping program allows you to send a test packet to a given location and see how long it takes to get
there and back. Try using ping to see how long it takes to get from your location to several known
locations. From thes data, plot the one-way transit time over the Internet as a function of distance. It is
best to use universities since the location of their servers is known very accurately. For example,
berkeley.edu is in Berkeley, California, mit.edu is in Cambridge, Massachusetts, vu.nl is in Amsterdam,
The Netherlands, www.usyd.edu.au is in Sydney, Australia, and www.uct.ac.za is in Cape Town, South
Africa.

Go to IETF's Web site, www.ietf.org, to see what they are doing. Pick a project you like and write a half-
page report on the problem and the proposed solution.

Standardization is very important in the network world. ITU and ISO are the main official standardization
organizations. Go to their Web sites, www.itu.org and www.iso.org, respectively, and learn about their
standardization work. Write a short report about the kinds of things they have standardized.

The Internet is made up of a large number of networks. Their arrangement determines the topology of
the Internet. A considerable amount of information about the Internet topology is available on line. Use a
search engine to find out more about the Internet topology and write a short report summarizing your
findings.




Chapter 2. The Physical Layer

In this chapter we will look at the lowest layer depicted in the hierarchy of Fig. 1-24. It defines the mechanical,
electrical, and timing interfaces to the network. We will begin with a theoretical analysis of data transmission,
only to discover that Mother (Parent?) Nature puts some limits on what can be sent over a channel.

Then we will cover three kinds of transmission media: guided (copper wire and fiber optics), wireless (terrestrial
radio), and satellite. This material will provide background information on the key transmission technologies used
in modern networks.

The remainder of the chapter will be devoted to three examples of communication systems used in practice for
wide area computer networks: the (fixed) telephone system, the mobile phone system, and the cable television
system. All three use fiber optics in the backbone, but they are organized differently and use different
technologies for the last mile.

2.1 The Theoretical Basis for Data Communication

Information can be transmitted on wires by varying some physical property such as voltage or current. By
representing the value of this voltage or current as a single-valued function of time, f(t), we can model the
behavior of the signal and analyze it mathematically. This analysis is the subject of the following sections.

2.1.1 Fourier Analysis

In the early 19th century, the French mathematician Jean-Baptiste Fourier proved that any reasonably behaved
periodic function, g(t) with period T can be constructed as the sum of a (possibly infinite) number of sines and
cosines:

Equation 2
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where f = 1/T is the fundamental frequency, a, and b, are the sine and cosine amplitudes of the nth harmonics
(terms), and c is a constant. Such a decomposition is called a Fourier series. From the Fourier series, the
function can be reconstructed; that is, if the period, T, is known and the amplitudes are given, the original
function of time can be found by performing the sums of Eq. (2-1).

A data signal that has a finite duration (which all of them do) can be handled by just imagining that it repeats the
entire pattern over and over forever (i.e., the interval from T to 2T is the same as from 0 to T, etc.).

The a, amplitudes can be computed for any given g(t) by multiplying both sides of Eq. (2-1) by sin(2pkft) and
then integrating from 0 to T. Since
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only one term of the summation survives: a,. The b, summation vanishes completely. Similarly, by multiplying
Eq. (2-1) by cos(2pkft) and integrating between 0 and T, we can derive b,. By just integrating both sides of the
equation as it stands, we can find c. The results of performing these operations are as follows:
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2.1.2 Bandwidth-Limited Signals

To see what all this has to do with data communication, let us consider a specific example: the transmission of
the ASCII character "b" encoded in an 8-bit byte. The bit pattern that is to be transmitted is 01100010. The left-
hand part of Fig. 2-1(a) shows the voltage output by the transmitting computer. The Fourier analysis of this

signal yields the coefficients:

Figure 2-1. (a) A binary signal and its root-mean-square Fourier amplitudes. (b)-(e) Successive

approximations to the original signal.
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The root-mean-square amplitudes, Nay + by , for the first few terms are shown on the right-hand side of Fig. 2-
1(a). These values are of interest because their squares are proportional to the energy transmitted at the
corresponding frequency.

No transmission facility can transmit signals without losing some power in the process. If all the Fourier
components were equally diminished, the resulting signal would be reduced in amplitude but not distorted [i.e., it
would have the same nice squared-off shape as Fig. 2-1(a)]. Unfortunately, all transmission facilities diminish
different Fourier components by different amounts, thus introducing distortion. Usually, the amplitudes are
transmitted undiminished from 0 up to some frequency f. [measured in cycles/sec or Hertz (Hz)] with all
frequencies above this cutoff frequency attenuated. The range of frequencies transmitted without being strongly
attenuated is called the bandwidth. In practice, the cutoff is not really sharp, so often the quoted bandwidth is
from O to the frequency at which half the power gets through.

The bandwidth is a physical property of the transmission medium and usually depends on the construction,
thickness, and length of the medium. In some cases a filter is introduced into the circuit to limit the amount of
bandwidth available to each customer. For example, a telephone wire may have a bandwidth of 1 MHz for short
distances, but telephone companies add a filter restricting each customer to about 3100 Hz. This bandwidth is
adequate for intelligible speech and improves system-wide efficiency by limiting resource usage by customers.

Now let us consider how the signal of Fig. 2-1(a) would look if the bandwidth were so low that only the lowest
frequencies were transmitted [i.e., if the function were being approximated by the first few terms of Eq. (2-1)].
Figure 2-1(b) shows the signal that results from a channel that allows only the first harmonic (the fundamental, f)
to pass through. Similarly, Fig. 2-1(c)-(e) show the spectra and reconstructed functions for higher-bandwidth
channels.

Given a bit rate of b bits/sec, the time required to send 8 bits (for example) 1 bit at a time is 8/b sec, so the
frequency of the first harmonic is b/8 Hz. An ordinary telephone line, often called a voice-grade line, has an
artificially-introduced cutoff frequency just above 3000 Hz. This restriction means that the number of the highest
harmonic passed through is roughly 3000/(b/8) or 24,000/b, (the cutoff is not sharp).

For some data rates, the numbers work out as shown in Fig. 2-2. From these numbers, it is clear that trying to
send at 9600 bps over a voice-grade telephone line will transform Fig. 2-1(a) into something looking like Fig. 2-
1(c), making accurate reception of the original binary bit stream tricky. It should be obvious that at data rates
much higher than 38.4 kbps, there is no hope at all for binary signals, even if the transmission facility is
completely noiseless. In other words, limiting the bandwidth limits the data rate, even for perfect channels.
However, sophisticated coding schemes that make use of several voltage levels do exist and can achieve higher
data rates. We will discuss these later in this chapter.

Figure 2-2. Relation between data rate and harmonics.



Bps _ T (msec) | First harmonic (Hz) # Harmonics sent
300 2667 ar.s 80
600 13.33 75 40
1200 6.67 150 20
2400 333 300 10
4800 167 600 5
9600 0.83 1200 2
19200 042 | 2400 1
38400 0.21 4800 0

2.1.3 The Maximum Data Rate of a Channel

As early as 1924, an AT&T engineer, Henry Nyquist, realized that even a perfect channel has a finite
transmission capacity. He derived an equation expressing the maximum data rate for a finite bandwidth
noiseless channel. In 1948, Claude Shannon carried Nyquist's work further and extended it to the case of a
channel subject to random (that is, thermodynamic) noise (Shannon, 1948). We will just briefly summarize their
now classical results here.

Nyquist proved that if an arbitrary signal has been run through a low-pass filter of bandwidth H, the filtered signal
can be completely reconstructed by making only 2H (exact) samples per second. Sampling the line faster than
2H times per second is pointless because the higher frequency components that such sampling could recover
have already been filtered out. If the signal consists of V discrete levels, Nyquist's theorem states:

maximum data rate = 24 log, V bits/scc

For example, a noiseless 3-kHz channel cannot transmit binary (i.e., two-level) signals at a rate exceeding 6000
bps.

So far we have considered only noiseless channels. If random noise is present, the situation deteriorates rapidly.
And there is always random (thermal) noise present due to the motion of the molecules in the system. The
amount of thermal noise present is measured by the ratio of the signal power to the noise power, called the
signal-to-noise ratio. If we denote the signal power by S and the noise power by N, the signal-to-noise ratio is
S/N. Usually, the ratio itself is not quoted; instead, the quantity 10 log,o S/N is given. These units are called
decibels (dB). An S/N ratio of 10 is 10 dB, a ratio of 100 is 20 dB, a ratio of 1000 is 30 dB, and so on. The
manufacturers of stereo amplifiers often characterize the bandwidth (frequency range) over which their product
is linear by giving the 3-dB frequency on each end. These are the points at which the amplification factor has

been approximately halved (because log03 E0.5).

Shannon's major result is that the maximum data rate of a noisy channel whose bandwidth is H Hz, and whose
signal-to-noise ratio is S/N, is given by

maximum number of bits/sec = H logs (1 4+ 5/N)

For example, a channel of 3000-Hz bandwidth with a signal to thermal noise ratio of 30 dB (typical parameters of
the analog part of the telephone system) can never transmit much more than 30,000 bps, no matter how many
or how few signal levels are used and no matter how often or how infrequently samples are taken. Shannon's
result was derived from information-theory arguments and applies to any channel subject to thermal noise.
Counterexamples should be treated in the same category as perpetual motion machines. It should be noted that
this is only an upper bound and real systems rarely achieve it.



2.2 Guided Transmission Media

The purpose of the physical layer is to transport a raw bit stream from one machine to another. Various physical
media can be used for the actual transmission. Each one has its own niche in terms of bandwidth, delay, cost,
and ease of installation and maintenance. Media are roughly grouped into guided media, such as copper wire
and fiber optics, and unguided media, such as radio and lasers through the air. We will look at all of these in the
following sections.

2.2.1 Magnetic Media

One of the most common ways to transport data from one computer to another is to write them onto magnetic
tape or removable media (e.g., recordable DVDs), physically transport the tape or disks to the destination
machine, and read them back in again. Although this method is not as sophisticated as using a geosynchronous
communication satellite, it is often more cost effective, especially for applications in which high bandwidth or cost
per bit transported is the key factor.

A simple calculation will make this point clear. An industry standard Ultrium tape can hold 200 gigabytes. A box
60 x 60 x 60 cm can hold about 1000 of these tapes, for a total capacity of 200 terabytes, or 1600 terabits (1.6
petabits). A box of tapes can be delivered anywhere in the United States in 24 hours by Federal Express and
other companies. The effective bandwidth of this transmission is 1600 terabits/86,400 sec, or 19 Ghps. If the
destination is only an hour away by road, the bandwidth is increased to over 400 Gbps. No computer network
can even approach this.

For a bank with many gigabytes of data to be backed up daily on a second machine (so the bank can continue to
function even in the face of a major flood or earthquake), it is likely that no other transmission technology can
even begin to approach magnetic tape for performance. Of course, networks are getting faster, but tape
densities are increasing, too.

If we now look at cost, we get a similar picture. The cost of an Ultrium tape is around $40 when bought in bulk. A
tape can be reused at least ten times, so the tape cost is maybe $4000 per box per usage. Add to this another
$1000 for shipping (probably much less), and we have a cost of roughly $5000 to ship 200 TB. This amounts to
shipping a gigabyte for under 3 cents. No network can beat that. The moral of the story is:

Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway
2.2.2 Twisted Pair

Although the bandwidth characteristics of magnetic tape are excellent, the delay characteristics are poor.
Transmission time is measured in minutes or hours, not milliseconds. For many applications an on-line
connection is needed. One of the oldest and still most common transmission media is twisted pair. A twisted pair
consists of two insulated copper wires, typically about 1 mm thick. The wires are twisted together in a helical
form, just like a DNA molecule. Twisting is done because two parallel wires constitute a fine antenna. When the
wires are twisted, the waves from different twists cancel out, so the wire radiates less effectively.

The most common application of the twisted pair is the telephone system. Nearly all telephones are connected
to the telephone company (telco) office by a twisted pair. Twisted pairs can run several kilometers without
amplification, but for longer distances, repeaters are needed. When many twisted pairs run in parallel for a
substantial distance, such as all the wires coming from an apartment building to the telephone company office,
they are bundled together and encased in a protective sheath. The pairs in these bundles would interfere with
one another if it were not for the twisting. In parts of the world where telephone lines run on poles above ground,
it is common to see bundles several centimeters in diameter.

Twisted pairs can be used for transmitting either analog or digital signals. The bandwidth depends on the
thickness of the wire and the distance traveled, but several megabits/sec can be achieved for a few kilometers in
many cases. Due to their adequate performance and low cost, twisted pairs are widely used and are likely to
remain so for years to come.



Twisted pair cabling comes in several varieties, two of which are important for computer networks. Category 3
twisted pairs consist of two insulated wires gently twisted together. Four such pairs are typically grouped in a
plastic sheath to protect the wires and keep them together. Prior to about 1988, most office buildings had one
category 3 cable running from a central wiring closet on each floor into each office. This scheme allowed up to
four regular telephones or two multiline telephones in each office to connect to the telephone company
equipment in the wiring closet.

Starting around 1988, the more advanced category 5 twisted pairs were introduced. They are similar to category
3 pairs, but with more twists per centimeter, which results in less crosstalk and a better-quality signal over longer
distances, making them more suitable for high-speed computer communication. Up-and-coming categories are 6
and 7, which are capable of handling signals with bandwidths of 250 MHz and 600 MHz, respectively (versus a
mere 16 MHz and 100 MHz for categories 3 and 5, respectively).

All of these wiring types are often referred to as UTP (Unshielded Twisted Pair), to contrast them with the bulky,
expensive, shielded twisted pair cables IBM introduced in the early 1980s, but which have not proven popular
outside of IBM installations. Twisted pair cabling is illustrated in Fig. 2-3.

Figure 2-3. (a) Category 3 UTP. (b) Category 5 UTP.
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2.2.3 Coaxial Cable

Another common transmission medium is the coaxial cable (known to its many friends as just "coax" and
pronounced "co-ax"). It has better shielding than twisted pairs, so it can span longer distances at higher speeds.
Two kinds of coaxial cable are widely used. One kind, 50-ohm cable, is commonly used when it is intended for
digital transmission from the start. The other kind, 75-ohm cable, is commonly used for analog transmission and
cable television but is becoming more important with the advent of Internet over cable. This distinction is based
on historical, rather than technical, factors (e.g., early dipole antennas had an impedance of 300 ochms, and it
was easy to use existing 4:1 impedance matching transformers).

A coaxial cable consists of a stiff copper wire as the core, surrounded by an insulating material. The insulator is
encased by a cylindrical conductor, often as a closely-woven braided mesh. The outer conductor is covered in a
protective plastic sheath. A cutaway view of a coaxial cable is shown in Fig. 2-4.

Figure 2-4. A coaxial cable.
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The construction and shielding of the coaxial cable give it a good combination of high bandwidth and excellent
noise immunity. The bandwidth possible depends on the cable quality, length, and signal-to-noise ratio of the
data signal. Modern cables have a bandwidth of close to 1 GHz. Coaxial cables used to be widely used within
the telephone system for long-distance lines but have now largely been replaced by fiber optics on long-haul
routes. Coax is still widely used for cable television and metropolitan area networks, however.



2.2.4 Fiber Optics

Many people in the computer industry take enormous pride in how fast computer technology is improving. The
original (1981) IBM PC ran at a clock speed of 4.77 MHz. Twenty years later, PCs could run at 2 GHz, a gain of
a factor of 20 per decade. Not too bad.

In the same period, wide area data communication went from 56 kbps (the ARPANET) to 1 Gbps (modern
optical communication), a gain of more than a factor of 125 per decade, while at the same time the error rate
went from 10° per bit to almost zero.

Furthermore, single CPUs are beginning to approach physical limits, such as speed of light and heat dissipation
problems. In contrast, with current fiber technology, the achievable bandwidth is certainly in excess of 50,000
Gbps (50 Tbps) and many people are looking very hard for better technologies and materials. The current
practical signaling limit of about 10 Gbps is due to our inability to convert between electrical and optical signals
any faster, although in the laboratory, 100 Gbps has been achieved on a single fiber.

In the race between computing and communication, communication won. The full implications of essentially
infinite bandwidth (although not at zero cost) have not yet sunk in to a generation of computer scientists and
engineers taught to think in terms of the low Nyquist and Shannon limits imposed by copper wire. The new
conventional wisdom should be that all computers are hopelessly slow and that networks should try to avoid
computation at all costs, no matter how much bandwidth that wastes. In this section we will study fiber optics to
see how that transmission technology works.

An optical transmission system has three key components: the light source, the transmission medium, and the
detector. Conventionally, a pulse of light indicates a 1 bit and the absence of light indicates a 0 bit. The
transmission medium is an ultra-thin fiber of glass. The detector generates an electrical pulse when light falls on
it. By attaching a light source to one end of an optical fiber and a detector to the other, we have a unidirectional
data transmission system that accepts an electrical signal, converts and transmits it by light pulses, and then
reconverts the output to an electrical signal at the receiving end.

This transmission system would leak light and be useless in practice except for an interesting principle of
physics. When a light ray passes from one medium to another, for example, from fused silica to air, the ray is
refracted (bent) at the silica/air boundary, as shown in Fig. 2-5(a). Here we see a light ray incident on the
boundary at an angle a; emerging at an angle b;. The amount of refraction depends on the properties of the two
media (in particular, their indices of refraction). For angles of incidence above a certain critical value, the light is
refracted back into the silica; none of it escapes into the air. Thus, a light ray incident at or above the critical
angle is trapped inside the fiber, as shown in Fig. 2-5(b), and can propagate for many kilometers with virtually no
loss.

Figure 2-5. (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary
at different angles. (b) Light trapped by total internal reflection.
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The sketch of Fig. 2-5(b) shows only one trapped ray, but since any light ray incident on the boundary above the
critical angle will be reflected internally, many different rays will be bouncing around at different angles. Each ray
is said to have a different mode, so a fiber having this property is called a multimode fiber.



However, if the fiber's diameter is reduced to a few wavelengths of light, the fiber acts like a wave guide, and the
light can propagate only in a straight line, without bouncing, yielding a single-mode fiber. Single-mode fibers are
more expensive but are widely used for longer distances. Currently available single-mode fibers can transmit
data at 50 Gbps for 100 km without amplification. Even higher data rates have been achieved in the laboratory
for shorter distances.

Transmission of Light through Fiber

Optical fibers are made of glass, which, in turn, is made from sand, an inexpensive raw material available in
unlimited amounts. Glassmaking was known to the ancient Egyptians, but their glass had to be no more than 1
mm thick or the light could not shine through. Glass transparent enough to be useful for windows was developed
during the Renaissance. The glass used for modern optical fibers is so transparent that if the oceans were full of
it instead of water, the seabed would be as visible from the surface as the ground is from an airplane on a clear
day.

The attenuation of light through glass depends on the wavelength of the light (as well as on some physical
properties of the glass). For the kind of glass used in fibers, the attenuation is shown in Fig. 2-6 in decibels per
linear kilometer of fiber. The attenuation in decibels is given by the formula

Figure 2-6. Attenuation of light through fiber in the infrared region.
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Attenuation in decibels = 10 log,

For example, a factor of two loss gives an attenuation of 10 log; 2 = 3 dB. The figure shows the near infrared
part of the spectrum, which is what is used in practice. Visible light has slightly shorter wavelengths, from 0.4 to
0.7 microns (1 micron is 10° meters). The true metric purist would refer to these wavelengths as 400 nm to 700
nm, but we will stick with traditional usage.

Three wavelength bands are used for optical communication. They are centered at 0.85, 1.30, and 1.55 microns,
respectively. The last two have good attenuation properties (less than 5 percent loss per kilometer). The 0.85
micron band has higher attenuation, but at that wavelength the lasers and electronics can be made from the
same material (gallium arsenide). All three bands are 25,000 to 30,000 GHz wide.

Light pulses sent down a fiber spread out in length as they propagate. This spreading is called chromatic
dispersion. The amount of it is wavelength dependent. One way to keep these spread-out pulses from
overlapping is to increase the distance between them, but this can be done only by reducing the signaling rate.



Fortunately, it has been discovered that by making the pulses in a special shape related to the reciprocal of the
hyperbolic cosine, nearly all the dispersion effects cancel out, and it is possible to send pulses for thousands of
kilometers without appreciable shape distortion. These pulses are called solitons. A considerable amount of
research is going on to take solitons out of the lab and into the field.

Fiber Cables

Fiber optic cables are similar to coax, except without the braid. Figure 2-7(a) shows a single fiber viewed from
the side. At the center is the glass core through which the light propagates. In multimode fibers, the core is
typically 50 microns in diameter, about the thickness of a human hair. In single-mode fibers, the core is 8 to 10
microns.

Figure 2-7. (a) Side view of a single fiber. (b) End view of a sheath with three fibers.

Care
|
(glass) -
W \‘. 5\
Cladding Jacket
(glass) (plastic)
(@) (o)

The core is surrounded by a glass cladding with a lower index of refraction than the core, to keep all the light in
the core. Next comes a thin plastic jacket to protect the cladding. Fibers are typically grouped in bundles,
protected by an outer sheath. Figure 2-7(b) shows a sheath with three fibers.

Terrestrial fiber sheaths are normally laid in the ground within a meter of the surface, where they are
occasionally subject to attacks by backhoes or gophers. Near the shore, transoceanic fiber sheaths are buried in
trenches by a kind of seaplow. In deep water, they just lie on the bottom, where they can be snagged by fishing
trawlers or attacked by giant squid.

Fibers can be connected in three different ways. First, they can terminate in connectors and be plugged into fiber
sockets. Connectors lose about 10 to 20 percent of the light, but they make it easy to reconfigure systems.

Second, they can be spliced mechanically. Mechanical splices just lay the two carefully-cut ends next to each
other in a special sleeve and clamp them in place. Alignment can be improved by passing light through the
junction and then making small adjustments to maximize the signal. Mechanical splices take trained personnel
about 5 minutes and result in a 10 percent light loss.

Third, two pieces of fiber can be fused (melted) to form a solid connection. A fusion splice is almost as good as a
single drawn fiber, but even here, a small amount of attenuation occurs.

For all three kinds of splices, reflections can occur at the point of the splice, and the reflected energy can
interfere with the signal.

Two kinds of light sources are typically used to do the signaling, LEDs (Light Emitting Diodes) and
semiconductor lasers. They have different properties, as shown in Fig. 2-8. They can be tuned in wavelength by
inserting Fabry-Perot or Mach-Zehnder interferometers between the source and the fiber. Fabry-Perot
interferometers are simple resonant cavities consisting of two parallel mirrors. The light is incident perpendicular
to the mirrors. The length of the cavity selects out those wavelengths that fit inside an integral number of times.
Mach-Zehnder interferometers separate the light into two beams. The two beams travel slightly different
distances. They are recombined at the end and are in phase for only certain wavelengths.

Figure 2-8. A comparison of semiconductor diodes and LEDs as light sources.



Item LED Semiconductor laser
Data rate _ Low High
Fiber type Multimode | Multimode or single mode
Distance Short Long
Lifetime Lang life Short lifa
Temperature sensitivity _ Minar Substantial
Cost Low cost Expensive

The receiving end of an optical fiber consists of a photodiode, which gives off an electrical pulse when struck by
light. The typical response time of a photodiode is 1 nsec, which limits data rates to about 1 Gbps. Thermal noise
is also an issue, so a pulse of light must carry enough energy to be detected. By making the pulses powerful
enough, the error rate can be made arbitrarily small.

Fiber Optic Networks

Fiber optics can be used for LANs as well as for long-haul transmission, although tapping into it is more complex
than connecting to an Ethernet. One way around the problem is to realize that a ring network is really just a
collection of point-to-point links, as shown in Fig. 2-9. The interface at each computer passes the light pulse
stream through to the next link and also serves as a T junction to allow the computer to send and accept
messages.

Figure 2-9. A fiber optic ring with active repeaters.
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Two types of interfaces are used. A passive interface consists of two taps fused onto the main fiber. One tap has
an LED or laser diode at the end of it (for transmitting), and the other has a photodiode (for receiving). The tap
itself is completely passive and is thus extremely reliable because a broken LED or photodiode does not break
the ring. It just takes one computer off-line.

The other interface type, shown in Fig. 2-9, is the active repeater. The incoming light is converted to an electrical
signal, regenerated to full strength if it has been weakened, and retransmitted as light. The interface with the
computer is an ordinary copper wire that comes into the signal regenerator. Purely optical repeaters are now
being used, too. These devices do not require the optical to electrical to optical conversions, which means they
can operate at extremely high bandwidths.

If an active repeater fails, the ring is broken and the network goes down. On the other hand, since the signal is
regenerated at each interface, the individual computer-to-computer links can be kilometers long, with virtually no
limit on the total size of the ring. The passive interfaces lose light at each junction, so the number of computers
and total ring length are greatly restricted.

A ring topology is not the only way to build a LAN using fiber optics. It is also possible to have hardware
broadcasting by using the passive star construction of Fig. 2-10. In this design, each interface has a fiber
running from its transmitter to a silica cylinder, with the incoming fibers fused to one end of the cylinder.
Similarly, fibers fused to the other end of the cylinder are run to each of the receivers. Whenever an interface
emits a light pulse, it is diffused inside the passive star to illuminate all the receivers, thus achieving broadcast.



In effect, the passive star combines all the incoming signals and transmits the merged result on all lines. Since
the incoming energy is divided among all the outgoing lines, the number of nodes in the network is limited by the
sensitivity of the photodiodes.

Figure 2-10. A passive star connection in a fiber optics network.
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Comparison of Fiber Optics and Copper Wire

It is instructive to compare fiber to copper. Fiber has many advantages. To start with, it can handle much higher
bandwidths than copper. This alone would require its use in high-end networks. Due to the low attenuation,
repeaters are needed only about every 50 km on long lines, versus about every 5 km for copper, a substantial
cost saving. Fiber also has the advantage of not being affected by power surges, electromagnetic interference,
or power failures. Nor is it affected by corrosive chemicals in the air, making it ideal for harsh factory
environments.

Oddly enough, telephone companies like fiber for a different reason: it is thin and lightweight. Many existing
cable ducts are completely full, so there is no room to add new capacity. Removing all the copper and replacing
it by fiber empties the ducts, and the copper has excellent resale value to copper refiners who see it as very high
grade ore. Also, fiber is much lighter than copper. One thousand twisted pairs 1 km long weigh 8000 kg. Two
fibers have more capacity and weigh only 100 kg, which greatly reduces the need for expensive mechanical
support systems that must be maintained. For new routes, fiber wins hands down due to its much lower
installation cost.

Finally, fibers do not leak light and are quite difficult to tap. These properties gives fiber excellent security against
potential wiretappers.

On the downside, fiber is a less familiar technology requiring skills not all engineers have, and fibers can be
damaged easily by being bent too much. Since optical transmission is inherently unidirectional, two-way
communication requires either two fibers or two frequency bands on one fiber. Finally, fiber interfaces cost more
than electrical interfaces. Nevertheless, the future of all fixed data communication for distances of more than a
few meters is clearly with fiber. For a discussion of all aspects of fiber optics and their networks, see (Hecht,
2001).

2.3 Wireless Transmission

Our age has given rise to information junkies: people who need to be on-line all the time. For these mobile
users, twisted pair, coax, and fiber optics are of no use. They need to get their hits of data for their laptop,



notebook, shirt pocket, palmtop, or wristwatch computers without being tethered to the terrestrial communication
infrastructure. For these users, wireless communication is the answer. In the following sections, we will look at
wireless communication in general, as it has many other important applications besides providing connectivity to
users who want to surf the Web from the beach.

Some people believe that the future holds only two kinds of communication: fiber and wireless. All fixed (i.e.,
nonmobile) computers, telephones, faxes, and so on will use fiber, and all mobile ones will use wireless.

Wireless has advantages for even fixed devices in some circumstances. For example, if running a fiber to a
building is difficult due to the terrain (mountains, jungles, swamps, etc.), wireless may be better. It is noteworthy
that modern wireless digital communication began in the Hawaiian Islands, where large chunks of Pacific Ocean
separated the users and the telephone system was inadequate.

2.3.1 The Electromagnetic Spectrum

When electrons move, they create electromagnetic waves that can propagate through space (even in a
vacuum). These waves were predicted by the British physicist James Clerk Maxwell in 1865 and first observed
by the German physicist Heinrich Hertz in 1887. The number of oscillations per second of a wave is called its
frequency, f, and is measured in Hz (in honor of Heinrich Hertz). The distance between two consecutive maxima
(or minima) is called the wavelength, which is universally designated by the Greek letter | (lambda).

When an antenna of the appropriate size is attached to an electrical circuit, the electromagnetic waves can be
broadcast efficiently and received by a receiver some distance away. All wireless communication is based on
this principle.

In vacuum, all electromagnetic waves travel at the same speed, no matter what their frequency. This speed,
usually called the speed of light, c, is approximately 3 x 10° m/sec, or about 1 foot (30 cm) per nanosecond. (A
case could be made for redefining the foot as the distance light travels in a vacuum in 1 nsec rather than basing
it on the shoe size of some long-dead king.) In copper or fiber the speed slows to about 2/3 of this value and
becomes slightly frequency dependent. The speed of light is the ultimate speed limit. No object or signal can
ever move faster than it.

The fundamental relation between f, |, and c (in vacuum) is
Equation 2

A=c

Since c is a constant, if we know f, we can find |, and vice versa. As a rule of thumb, when | is in meters and f is

in MHz, If =300. For example, 100-MHz waves are about 3 meters long, 1000-MHz waves are 0.3-meters long,
and 0.1-meter waves have a frequency of 3000 MHz.

The electromagnetic spectrum is shown in Fig. 2-11. The radio, microwave, infrared, and visible light portions of
the spectrum can all be used for transmitting information by modulating the amplitude, frequency, or phase of
the waves. Ultraviolet light, X-rays, and gamma rays would be even better, due to their higher frequencies, but
they are hard to produce and modulate, do not propagate well through buildings, and are dangerous to living
things. The bands listed at the bottom of Fig. 2-11 are the official ITU names and are based on the wavelengths,
so the LF band goes from 1 km to 10 km (approximately 30 kHz to 300 kHz). The terms LF, MF, and HF refer to
low, medium, and high frequency, respectively. Clearly, when the names were assigned, nobody expected to go
above 10 MHz, so the higher bands were later named the Very, Ultra, Super, Extremely, and Tremendously High
Frequency bands. Beyond that there are no names, but Incredibly, Astonishingly, and Prodigiously high
frequency (IHF, AHF, and PHF) would sound nice.

Figure 2-11. The electromagnetic spectrum and its uses for communication.
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The amount of information that an electromagnetic wave can carry is related to its bandwidth. With current
technology, it is possible to encode a few bits per Hertz at low frequencies, but often as many as 8 at high
frequencies, so a coaxial cable with a 750 MHz bandwidth can carry several gigabits/sec. From Fig. 2-11 it
should now be obvious why networking people like fiber optics so much.

If we solve Eq. (2-2) for f and differentiate with respect to |, we get

dar_ e
dh 32

If we now go to finite differences instead of differentials and only look at absolute values, we get

Equation 2
A,
Af= ‘}2

Thus, given the width of a wavelength band, DI, we can compute the corresponding frequency band, Df, and
from that the data rate the band can produce. The wider the band, the higher the data rate. As an example,
consider the 1.30-micron band of Fig. 2-6. Here we have 1=1.3 x 10° and DI = 0.17 x 10°®,soDf is about 30 THz.
At, say, 8 bits/Hz, we get 240 Tbps.

Most transmissions use a narrow frequency band (i.e., Df/f < 1) to get the best reception (many watts/Hz).
However, in some cases, a wide band is used, with two variations. In frequency hopping spread spectrum, the
transmitter hops from frequency to frequency hundreds of times per second. It is popular for military
communication because it makes transmissions hard to detect and next to impossible to jam. It also offers good
resistance to multipath fading because the direct signal always arrives at the receiver first. Reflected signals
follow a longer path and arrive later. By then the receiver may have changed frequency and no longer accepts
signals on the previous frequency, thus eliminating interference between the direct and reflected signals. In
recent years, this technique has also been applied commercially—both 802.11 and Bluetooth use it, for example.

As a curious footnote, the technique was co-invented by the Austrian-born sex goddess Hedy Lamarr, the first
woman to appear nude in a motion picture (the 1933 Czech film Extase). Her first husband was an armaments
manufacturer who told her how easy it was to block the radio signals then used to control torpedos. When she



discovered that he was selling weapons to Hitler, she was horrified, disguised herself as a maid to escape him,
and fled to Hollywood to continue her career as a movie actress. In her spare time, she invented frequency
hopping to help the Allied war effort. Her scheme used 88 frequencies, the number of keys (and frequencies) on
the piano. For their invention, she and her friend, the musical composer George Antheil, received U.S. patent
2,292,387. However, they were unable to convince the U.S. Navy that their invention had any practical use and
never received any royalties. Only years after the patent expired did it become popular.

The other form of spread spectrum, direct sequence spread spectrum, which spreads the signal over a wide
frequency band, is also gaining popularity in the commercial world. In particular, some second-generation mobile
phones use it, and it will become dominant with the third generation, thanks to its good spectral efficiency, noise
immunity, and other properties. Some wireless LANs also use it. We will come back to spread spectrum later in
this chapter. For a fascinating and detailed history of spread spectrum communication, see (Scholtz, 1982).

For the moment, we will assume that all transmissions use a narrow frequency band. We will now discuss how
the various parts of the electromagnetic spectrum of Fig. 2-11 are used, starting with radio.

2.3.2 Radio Transmission

Radio waves are easy to generate, can travel long distances, and can penetrate buildings easily, so they are
widely used for communication, both indoors and outdoors. Radio waves also are omnidirectional, meaning that
they travel in all directions from the source, so the transmitter and receiver do not have to be carefully aligned
physically.

Sometimes omnidirectional radio is good, but sometimes it is bad. In the 1970s, General Motors decided to
equip all its new Cadillacs with computer-controlled antilock brakes. When the driver stepped on the brake pedal,
the computer pulsed the brakes on and off instead of locking them on hard. One fine day an Ohio Highway
Patrolman began using his new mobile radio to call headquarters, and suddenly the Cadillac next to him began
behaving like a bucking bronco. When the officer pulled the car over, the driver claimed that he had done
nothing and that the car had gone crazy.

Eventually, a pattern began to emerge: Cadillacs would sometimes go berserk, but only on major highways in
Ohio and then only when the Highway Patrol was watching. For a long, long time General Motors could not
understand why Cadillacs worked fine in all the other states and also on minor roads in Ohio. Only after much
searching did they discover that the Cadillac's wiring made a fine antenna for the frequency used by the Ohio
Highway Patrol's new radio system.

The properties of radio waves are frequency dependent. At low frequencies, radio waves pass through obstacles
well, but the power falls off sharply with distance from the source, roughly as 1/r* in air. At high frequencies,
radio waves tend to travel in straight lines and bounce off obstacles. They are also absorbed by rain. At all
frequencies, radio waves are subject to interference from motors and other electrical equipment.

Due to radio's ability to travel long distances, interference between users is a problem. For this reason, all
governments tightly license the use of radio transmitters, with one exception, discussed below.

In the VLF, LF, and MF bands, radio waves follow the ground, as illustrated in Fig. 2-12(a). These waves can be
detected for perhaps 1000 km at the lower frequencies, less at the higher ones. AM radio broadcasting uses the
MF band, which is why the ground waves from Boston AM radio stations cannot be heard easily in New York.
Radio waves in these bands pass through buildings easily, which is why portable radios work indoors. The main
problem with using these bands for data communication is their low bandwidth [see Eq. (2-3)].

Figure 2-12. (a) In the VLF, LF, and MF bands, radio waves follow the curvature of the earth. (b) In the HF
band, they bounce off the ionosphere.
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In the HF and VHF bands, the ground waves tend to be absorbed by the earth. However, the waves that reach
the ionosphere, a layer of charged particles circling the earth at a height of 100 to 500 km, are refracted by it and
sent back to earth, as shown in Fig. 2-12(b). Under certain atmospheric conditions, the signals can bounce
several times. Amateur radio operators (hams) use these bands to talk long distance. The military also
communicate in the HF and VHF bands.

2.3.3 Microwave Transmission

Above 100 MHz, the waves travel in nearly straight lines and can therefore be narrowly focused. Concentrating
all the energy into a small beam by means of a parabolic antenna (like the familiar satellite TV dish) gives a
much higher signal-to-noise ratio, but the transmitting and receiving antennas must be accurately aligned with
each other. In addition, this directionality allows multiple transmitters lined up in a row to communicate with
multiple receivers in a row without interference, provided some minimum spacing rules are observed. Before
fiber optics, for decades these microwaves formed the heart of the long-distance telephone transmission system.
In fact, MCI, one of AT&T's first competitors after it was deregulated, built its entire system with microwave
communications going from tower to tower tens of kilometers apart. Even the company's name reflected this
(MCI stood for Microwave Communications, Inc.). MCI has since gone over to fiber and merged with WorldCom.

Since the microwaves travel in a straight line, if the towers are too far apart, the earth will get in the way (think
about a San Francisco to Amsterdam link). Consequently, repeaters are needed periodically. The higher the
towers are, the farther apart they can be. The distance between repeaters goes up very roughly with the square
root of the tower height. For 100-meter-high towers, repeaters can be spaced 80 km apart.

Unlike radio waves at lower frequencies, microwaves do not pass through buildings well. In addition, even
though the beam may be well focused at the transmitter, there is still some divergence in space. Some waves
may be refracted off low-lying atmospheric layers and may take slightly longer to arrive than the direct waves.
The delayed waves may arrive out of phase with the direct wave and thus cancel the signal. This effect is called
multipath fading and is often a serious problem. It is weather and frequency dependent. Some operators keep 10
percent of their channels idle as spares to switch on when multipath fading wipes out some frequency band
temporarily.

The demand for more and more spectrum drives operators to yet higher frequencies. Bands up to 10 GHz are
now in routine use, but at about 4 GHz a new problem sets in: absorption by water. These waves are only a few
centimeters long and are absorbed by rain. This effect would be fine if one were planning to build a huge outdoor
microwave oven for roasting passing birds, but for communication, it is a severe problem. As with multipath
fading, the only solution is to shut off links that are being rained on and route around them.

In summary, microwave communication is so widely used for long-distance telephone communication, mobile
phones, television distribution, and other uses that a severe shortage of spectrum has developed. It has several
significant advantages over fiber. The main one is that no right of way is needed, and by buying a small plot of
ground every 50 km and putting a microwave tower on it, one can bypass the telephone system and
communicate directly. This is how MCI managed to get started as a new long-distance telephone company so
quickly. (Sprint went a completely different route: it was formed by the Southern Pacific Railroad, which already
owned a large amount of right of way and just buried fiber next to the tracks.)

Microwave is also relatively inexpensive. Putting up two simple towers (may be just big poles with four guy wires)
and putting antennas on each one may be cheaper than burying 50 km of fiber through a congested urban area
or up over a mountain, and it may also be cheaper than leasing the telephone company's fiber, especially if the
telephone company has not yet even fully paid for the copper it ripped out when it put in the fiber.



The Politics of the Electromagnetic Spectrum

To prevent total chaos, there are national and international agreements about who gets to use which
frequencies. Since everyone wants a higher data rate, everyone wants more spectrum. National governments
allocate spectrum for AM and FM radio, television, and mobile phones, as well as for telephone companies,
police, maritime, navigation, military, government, and many other competing users. Worldwide, an agency of
ITU-R (WARC) tries to coordinate this allocation so devices that work in multiple countries can be manufactured.
However, countries are not bound by ITU-R's recommendations, and the FCC (Federal Communication
Commission), which does the allocation for the United States, has occasionally rejected ITU-R's
recommendations (usually because they required some politically-powerful group giving up some piece of the
spectrum).

Even when a piece of spectrum has been allocated to some use, such as mobile phones, there is the additional
issue of which carrier is allowed to use which frequencies. Three algorithms were widely used in the past. The
oldest algorithm, often called the beauty contest, requires each carrier to explain why its proposal serves the
public interest best. Government officials then decide which of the nice stories they enjoy most. Having some
government official award property worth billions of dollars to his favorite company often leads to bribery,
corruption, nepotism, and worse. Furthermore, even a scrupulously honest government official who thought that
a foreign company could do a better job than any of the national companies would have a lot of explaining to do.

This observation led to algorithm 2, holding a lottery among the interested companies. The problem with that
idea is that companies with no interest in using the spectrum can enter the lottery. If, say, a fast food restaurant
or shoe store chain wins, it can resell the spectrum to a carrier at a huge profit and with no risk.

Bestowing huge windfalls on alert, but otherwise random, companies has been severely criticized by many,
which led to algorithm 3: auctioning off the bandwidth to the highest bidder. When England auctioned off the
frequencies needed for third-generation mobile systems in 2000, they expected to get about $4 billion. They
actually received about $40 billion because the carriers got into a feeding frenzy, scared to death of missing the
mobile boat. This event switched on nearby governments' greedy bits and inspired them to hold their own
auctions. It worked, but it also left some of the carriers with so much debt that they are close to bankruptcy. Even
in the best cases, it will take many years to recoup the licensing fee.

A completely different approach to allocating frequencies is to not allocate them at all. Just let everyone transmit
at will but regulate the power used so that stations have such a short range they do not interfere with each other.
Accordingly, most governments have set aside some frequency bands, called the ISM (Industrial, Scientific,
Medical) bands for unlicensed usage. Garage door openers, cordless phones, radio-controlled toys, wireless
mice, and numerous other wireless household devices use the ISM bands. To minimize interference between
these uncoordinated devices, the FCC mandates that all devices in the ISM bands use spread spectrum
techniques. Similar rules apply in other countries

The location of the ISM bands varies somewhat from country to country. In the United States, for example,
devices whose power is under 1 watt can use the bands shown in Fig. 2-13 without requiring a FCC license. The
900-MHz band works best, but it is crowded and not available worldwide. The 2.4-GHz band is available in most
countries, but it is subject to interference from microwave ovens and radar installations. Bluetooth and some of
the 802.11 wireless LANs operate in this band. The 5.7-GHz band is new and relatively undeveloped, so
equipment for it is expensive, but since 802.11a uses it, it will quickly become more popular.

Figure 2-13. The ISM bands in the United States.
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2.3.4 Infrared and Millimeter Waves

Unguided infrared and millimeter waves are widely used for short-range communication. The remote controls
used on televisions, VCRs, and stereos all use infrared communication. They are relatively directional, cheap,
and easy to build but have a major drawback: they do not pass through solid objects (try standing between your
remote control and your television and see if it still works). In general, as we go from long-wave radio toward
visible light, the waves behave more and more like light and less and less like radio.

On the other hand, the fact that infrared waves do not pass through solid walls well is also a plus. It means that
an infrared system in one room of a building will not interfere with a similar system in adjacent rooms or
buildings: you cannot control your neighbor's television with your remote control. Furthermore, security of
infrared systems against eavesdropping is better than that of radio systems precisely for this reason. Therefore,
no government license is needed to operate an infrared system, in contrast to radio systems, which must be
licensed outside the ISM bands. Infrared communication has a limited use on the desktop, for example,
connecting notebook computers and printers, but it is not a major player in the communication game.

2.3.5 Lightwave Transmission

Unguided optical signaling has been in use for centuries. Paul Revere used binary optical signaling from the Old
North Church just prior to his famous ride. A more modern application is to connect the LANs in two buildings via
lasers mounted on their rooftops. Coherent optical signaling using lasers is inherently unidirectional, so each
building needs its own laser and its own photodetector. This scheme offers very high bandwidth and very low
cost. It is also relatively easy to install and, unlike microwave, does not require an FCC license.

The laser's strength, a very narrow beam, is also its weakness here. Aiming a laser beam 1-mm wide at a target
the size of a pin head 500 meters away requires the marksmanship of a latter-day Annie Oakley. Usually, lenses
are put into the system to defocus the beam slightly.

A disadvantage is that laser beams cannot penetrate rain or thick fog, but they normally work well on sunny
days. However, the author once attended a conference at a modern hotel in Europe at which the conference
organizers thoughtfully provided a room full of terminals for the attendees to read their e-mail during boring
presentations. Since the local PTT was unwilling to install a large number of telephone lines for just 3 days, the
organizers put a laser on the roof and aimed it at their university's computer science building a few kilometers
away. They tested it the night before the conference and it worked perfectly. At 9 a.m. the next morning, on a
bright sunny day, the link failed completely and stayed down all day. That evening, the organizers tested it again
very carefully, and once again it worked absolutely perfectly. The pattern repeated itself for two more days
consistently.

After the conference, the organizers discovered the problem. Heat from the sun during the daytime caused
convection currents to rise up from the roof of the building, as shown in Fig. 2-14. This turbulent air diverted the
beam and made it dance around the detector. Atmospheric "seeing" like this makes the stars twinkle (which is
why astronomers put their telescopes on the tops of mountains—to get above as much of the atmosphere as
possible). It is also responsible for shimmering roads on a hot day and the wavy images seen when one looks
out above a hot radiator.

Figure 2-14. Convection currents can interfere with laser communication systems. A bidirectional
system with two lasers is pictured here.
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2.4 Communication Satellites

In the 1950s and early 1960s, people tried to set up communication systems by bouncing signals off metallized
weather balloons. Unfortunately, the received signals were too weak to be of any practical use. Then the U.S.
Navy noticed a kind of permanent weather balloon in the sky—the moon—and built an operational system for
ship-to-shore communication by bouncing signals off it.

Further progress in the celestial communication field had to wait until the first communication satellite was
launched. The key difference between an artificial satellite and a real one is that the artificial one can amplify the
signals before sending them back, turning a strange curiosity into a powerful communication system.

Communication satellites have some interesting properties that make them attractive for many applications. In its
simplest form, a communication satellite can be thought of as a big microwave repeater in the sky. It contains
several transponders, each of which listens to some portion of the spectrum, amplifies the incoming signal, and
then rebroadcasts it at another frequency to avoid interference with the incoming signal. The downward beams
can be broad, covering a substantial fraction of the earth's surface, or narrow, covering an area only hundreds of
kilometers in diameter. This mode of operation is known as a bent pipe.

According to Kepler's law, the orbital period of a satellite varies as the radius of the orbit to the 3/2 power. The
higher the satellite, the longer the period. Near the surface of the earth, the period is about 90 minutes.
Consequently, low-orbit satellites pass out of view fairly quickly, so many of them are needed to provide
continuous coverage. At an altitude of about 35,800 km, the period is 24 hours. At an altitude of 384,000 km, the
period is about one month, as anyone who has observed the moon regularly can testify.

A satellite's period is important, but it is not the only issue in determining where to place it. Another issue is the
presence of the Van Allen belts, layers of highly charged particles trapped by the earth's magnetic field. Any
satellite flying within them would be destroyed fairly quickly by the highly-energetic charged particles trapped
there by the earth's magnetic field. These factors lead to three regions in which satellites can be placed safely.
These regions and some of their properties are illustrated in Fig. 2-15. Below we will briefly describe the
satellites that inhabit each of these regions.

Figure 2-15. Communication satellites and some of their properties, including altitude above the earth,
round-trip delay time, and number of satellites needed for global coverage.
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2.4.1 Geostationary Satellites
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In 1945, the science fiction writer Arthur C. Clarke calculated that a satellite at an altitude of 35,800 km in a
circular equatorial orbit would appear to remain motionless in the sky. so it would not need to be tracked (Clarke,
1945). He went on to describe a complete communication system that used these (manned) geostationary
satellites, including the orbits, solar panels, radio frequencies, and launch procedures. Unfortunately, he
concluded that satellites were impractical due to the impossibility of putting power-hungry, fragile, vacuum tube
amplifiers into orbit, so he never pursued this idea further, although he wrote some science fiction stories about
it.

The invention of the transistor changed all that, and the first artificial communication satellite, Telstar, was
launched in July 1962. Since then, communication satellites have become a multibillion dollar business and the
only aspect of outer space that has become highly profitable. These high-flying satellites are often called GEO
(Geostationary Earth Orbit) satellites.

With current technology, it is unwise to have geostationary satellites spaced much closer than 2 degrees in the
360-degree equatorial plane, to avoid interference. With a spacing of 2 degrees, there can only be 360/2 = 180
of these satellites in the sky at once. However, each transponder can use multiple frequencies and polarizations
to increase the available bandwidth.

To prevent total chaos in the sky, orbit slot allocation is done by ITU. This process is highly political, with
countries barely out of the stone age demanding "their" orbit slots (for the purpose of leasing them to the highest
bidder). Other countries, however, maintain that national property rights do not extend up to the moon and that
no country has a legal right to the orbit slots above its territory. To add to the fight, commercial
telecommunication is not the only application. Television broadcasters, governments, and the military also want
a piece of the orbiting pie.

Modern satellites can be quite large, weighing up to 4000 kg and consuming several kilowatts of electric power
produced by the solar panels. The effects of solar, lunar, and planetary gravity tend to move them away from
their assigned orbit slots and orientations, an effect countered by on-board rocket motors. This fine-tuning
activity is called station keeping. However, when the fuel for the motors has been exhausted, typically in about
10 years, the satellite drifts and tumbles helplessly, so it has to be turned off. Eventually, the orbit decays and
the satellite reenters the atmosphere and burns up or occasionally crashes to earth.

Orbit slots are not the only bone of contention. Frequencies are, too, because the downlink transmissions
interfere with existing microwave users. Consequently, ITU has allocated certain frequency bands to satellite
users. The main ones are listed in Fig. 2-16. The C band was the first to be designated for commercial satellite
traffic. Two frequency ranges are assigned in it, the lower one for downlink traffic (from the satellite) and the
upper one for uplink traffic (to the satellite). To allow traffic to go both ways at the same time, two channels are
required, one going each way. These bands are already overcrowded because they are also used by the
common carriers for terrestrial microwave links. The L and S bands were added by international agreement in
2000. However, they are narrow and crowded.



Figure 2-16. The principal satellite bands.
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The next highest band available to commercial telecommunication carriers is the Ku (K under) band. This band
is not (yet) congested, and at these frequencies, satellites can be spaced as close as 1 degree. However,
another problem exists: rain. Water is an excellent absorber of these short microwaves. Fortunately, heavy
storms are usually localized, so using several widely separated ground stations instead of just one circumvents
the problem but at the price of extra antennas, extra cables, and extra electronics to enable rapid switching
between stations. Bandwidth has also been allocated in the Ka (K above) band for commercial satellite traffic,
but the equipment needed to use it is still expensive. In addition to these commercial bands, many government
and military bands also exist.

A modern satellite has around 40 transponders, each with an 80-MHz bandwidth. Usually, each transponder
operates as a bent pipe, but recent satellites have some on-board processing capacity, allowing more
sophisticated operation. In the earliest satellites, the division of the transponders into channels was static: the
bandwidth was simply split up into fixed frequency bands. Nowadays, each transponder beam is divided into
time slots, with various users taking turns. We will study these two techniques (frequency division multiplexing
and time division multiplexing) in detail later in this chapter.

The first geostationary satellites had a single spatial beam that illuminated about 1/3 of the earth's surface,
called its footprint. With the enormous decline in the price, size, and power requirements of microelectronics, a
much more sophisticated broadcasting strategy has become possible. Each satellite is equipped with multiple
antennas and multiple transponders. Each downward beam can be focused on a small geographical area, so
multiple upward and downward transmissions can take place simultaneously. Typically, these so-called spot
beams are elliptically shaped, and can be as small as a few hundred km in diameter. A communication satellite
for the United States typically has one wide beam for the contiguous 48 states, plus spot beams for Alaska and
Hawaii.

A new development in the communication satellite world is the development of low-cost microstations,
sometimes called VSATs (Very Small Aperture Terminals) (Abramson, 2000). These tiny terminals have 1-meter
or smaller antennas (versus 10 m for a standard GEO antenna) and can put out about 1 watt of power. The
uplink is generally good for 19.2 kbps, but the downlink is more often 512 kbps or more. Direct broadcast
satellite television uses this technology for one-way transmission.

In many VSAT systems, the microstations do not have enough power to communicate directly with one another
(via the satellite, of course). Instead, a special ground station, the hub, with a large, high-gain antenna is needed
to relay traffic between VSATS, as shown in Fig. 2-17. In this mode of operation, either the sender or the receiver
has a large antenna and a powerful amplifier. The trade-off is a longer delay in return for having cheaper end-
user stations.

Figure 2-17. VSATs using a hub.
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VSATSs have great potential in rural areas. It is not widely appreciated, but over half the world's population lives
over an hour's walk from the nearest telephone. Stringing telephone wires to thousands of small villages is far
beyond the budgets of most Third World governments, but installing 1-meter VSAT dishes powered by solar
cells is often feasible. VSATSs provide the technology that will wire the world.

Communication satellites have several properties that are radically different from terrestrial point-to-point links.
To begin with, even though signals to and from a satellite travel at the speed of light (nearly 300,000 km/sec),
the long round-trip distance introduces a substantial delay for GEO satellites. Depending on the distance
between the user and the ground station, and the elevation of the satellite above the horizon, the end-to-end
transit time is between 250 and 300 msec. A typical value is 270 msec (540 msec for a VSAT system with a
hub).

For comparison purposes, terrestrial microwave links have a propagation delay of roughly 3 psec/km, and
coaxial cable or fiber optic links have a delay of approximately 5 psec/km. The latter is slower than the former
because electromagnetic signals travel faster in air than in solid materials.

Another important property of satellites is that they are inherently broadcast media. It does not cost more to send
a message to thousands of stations within a transponder's footprint than it does to send to one. For some
applications, this property is very useful. For example, one could imagine a satellite broadcasting popular Web
pages to the caches of a large number of computers spread over a wide area. Even when broadcasting can be
simulated with point-to-point lines, satellite broadcasting may be much cheaper. On the other hand, from a
security and privacy point of view, satellites are a complete disaster: everybody can hear everything. Encryption
is essential when security is required.

Satellites also have the property that the cost of transmitting a message is independent of the distance
traversed. A call across the ocean costs no more to service than a call across the street. Satellites also have
excellent error rates and can be deployed almost instantly, a major consideration for military communication.

2.4.2 Medium-Earth Orbit Satellites

At much lower altitudes, between the two Van Allen belts, we find the MEO (Medium-Earth Orbit) satellites. As
viewed from the earth, these drift slowly in longitude, taking something like 6 hours to circle the earth.
Accordingly, they must be tracked as they move through the sky. Because they are lower than the GEOs, they
have a smaller footprint on the ground and require less powerful transmitters to reach them. Currently they are
not used for telecommunications, so we will not examine them further here. The 24 GPS (Global Positioning
System) satellites orbiting at about 18,000 km are examples of MEO satellites.



2.4.3 Low-Earth Orbit Satellites

Moving down in altitude, we come to the LEO (Low-Earth Orbit) satellites. Due to their rapid motion, large
numbers of them are needed for a complete system. On the other hand, because the satellites are so close to
the earth, the ground stations do not need much power, and the round-trip delay is only a few milliseconds. In
this section we will examine three examples, two aimed at voice communication and one aimed at Internet
service.

Iridium

As mentioned above, for the first 30 years of the satellite era, low-orbit satellites were rarely used because they
zZip into and out of view so quickly. In 1990, Motorola broke new ground by filing an application with the FCC
asking for permission to launch 77 low-orbit satellites for the Iridium project (element 77 is iridium). The plan was
later revised to use only 66 satellites, so the project should have been renamed Dysprosium (element 66), but
that probably sounded too much like a disease. The idea was that as soon as one satellite went out of view,
another would replace it. This proposal set off a feeding frenzy among other communication companies. All of a
sudden, everyone wanted to launch a chain of low-orbit satellites.

After seven years of cobbling together partners and financing, the partners launched the Iridium satellites in
1997. Communication service began in November 1998. Unfortunately, the commercial demand for large, heavy
satellite telephones was negligible because the mobile phone network had grown spectacularly since 1990. As a
consequence, Iridium was not profitable and was forced into bankruptcy in August 1999 in one of the most
spectacular corporate fiascos in history. The satellites and other assets (worth $5 billion) were subsequently
purchased by an investor for $25 million at a kind of extraterrestrial garage sale. The lIridium service was
restarted in March 2001.

Iridium's business was (and is) providing worldwide telecommunication service using hand-held devices that
communicate directly with the Iridium satellites. It provides voice, data, paging, fax, and navigation service
everywhere on land, sea, and air. Customers include the maritime, aviation, and oil exploration industries, as
well as people traveling in parts of the world lacking a telecommunications infrastructure (e.g., deserts,
mountains, jungles, and some Third World countries).

The Iridium satellites are positioned at an altitude of 750 km, in circular polar orbits. They are arranged in north-
south necklaces, with one satellite every 32 degrees of latitude. With six satellite necklaces, the entire earth is
covered, as suggested by Fig. 2-18(a). People not knowing much about chemistry can think of this arrangement
as a very, very big dysprosium atom, with the earth as the nucleus and the satellites as the electrons.

Figure 2-18. (a) The Iridium satellites form six necklaces around the earth. (b) 1628 moving cells cover
the earth.




Each satellite has a maximum of 48 cells (spot beams), with a total of 1628 cells over the surface of the earth, as
shown in Fig. 2-18(b). Each satellite has a capacity of 3840 channels, or 253,440 in all. Some of these are used
for paging and navigation, while others are used for data and voice.

An interesting property of Iridium is that communication between distant customers takes place in space, with
one satellite relaying data to the next one, as illustrated in Fig. 2-19(a). Here we see a caller at the North Pole
contacting a satellite directly overhead. The call is relayed via other satellites and finally sent down to the callee
at the South Pole.

Figure 2-19. (a) Relaying in space. (b) Relaying on the ground.
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An alternative design to Iridium is Globalstar. It is based on 48 LEO satellites but uses a different switching
scheme than that of Iridium. Whereas Iridium relays calls from satellite to satellite, which requires sophisticated
switching equipment in the satellites, Globalstar uses a traditional bent-pipe design. The call originating at the
North Pole in Fig. 2-19(b) is sent back to earth and picked up by the large ground station at Santa's Workshop.
The call is then routed via a terrestrial network to the ground station nearest the callee and delivered by a bent-
pipe connection as shown. The advantage of this scheme is that it puts much of the complexity on the ground,
where it is easier to manage. Also, the use of large ground station antennas that can put out a powerful signal
and receive a weak one means that lower-powered telephones can be used. After all, the telephone puts out
only a few milliwatts of power, so the signal that gets back to the ground station is fairly weak, even after having
been amplified by the satellite.

Teledesic

Iridium is targeted at telephone users located in odd places. Our next example, Teledesic, is targeted at
bandwidth-hungry Internet users all over the world. It was conceived in 1990 by mobile phone pioneer Craig
McCaw and Microsoft founder Bill Gates, who was unhappy with the snail's pace at which the world's telephone
companies were providing high bandwidth to computer users. The goal of the Teledesic system is to provide
millions of concurrent Internet users with an uplink of as much as 100 Mbps and a downlink of up to 720 Mbps
using a small, fixed, VSAT-type antenna, completely bypassing the telephone system. To telephone companies,
this is pie-in-the-sky.

The original design was for a system consisting of 288 small-footprint satellites arranged in 12 planes just below
the lower Van Allen belt at an altitude of 1350 km. This was later changed to 30 satellites with larger footprints.
Transmission occurs in the relatively uncrowded and high-bandwidth Ka band. The system is packet-switched in
space, with each satellite capable of routing packets to its neighboring satellites. When a user needs bandwidth
to send packets, it is requested and assigned dynamically in about 50 msec. The system is scheduled to go live
in 2005 if all goes as planned.



2.4.4 Satellites versus Fiber

A comparison between satellite communication and terrestrial communication is instructive. As recently as 20
years ago, a case could be made that the future of communication lay with communication satellites. After all,
the telephone system had changed little in the past 100 years and showed no signs of changing in the next 100
years. This glacial movement was caused in no small part by the regulatory environment in which the telephone
companies were expected to provide good voice service at reasonable prices (which they did), and in return got
a guaranteed profit on their investment. For people with data to transmit, 1200-bps modems were available. That
was pretty much all there was.

The introduction of competition in 1984 in the United States and somewhat later in Europe changed all that
radically. Telephone companies began replacing their long-haul networks with fiber and introduced high-
bandwidth services like ADSL (Asymmetric Digital Subscriber Line). They also stopped their long-time practice of
charging artificially-high prices to long-distance users to subsidize local service.

All of a sudden, terrestrial fiber connections looked like the long-term winner. Nevertheless, communication
satellites have some major niche markets that fiber does not (and, sometimes, cannot) address. We will now
look at a few of these.

First, while a single fiber has, in principle, more potential bandwidth than all the satellites ever launched, this
bandwidth is not available to most users. The fibers that are now being installed are used within the telephone
system to handle many long distance calls at once, not to provide individual users with high bandwidth. With
satellites, it is practical for a user to erect an antenna on the roof of the building and completely bypass the
telephone system to get high bandwidth. Teledesic is based on this idea.

A second niche is for mobile communication. Many people nowadays want to communicate while jogging,
driving, sailing, and flying. Terrestrial fiber optic links are of no use to them, but satellite links potentially are. It is
possible, however, that a combination of cellular radio and fiber will do an adequate job for most users (but
probably not for those airborne or at sea).

A third niche is for situations in which broadcasting is essential. A message sent by satellite can be received by
thousands of ground stations at once. For example, an organization transmitting a stream of stock, bond, or
commodity prices to thousands of dealers might find a satellite system to be much cheaper than simulating
broadcasting on the ground.

A fourth niche is for communication in places with hostile terrain or a poorly developed terrestrial infrastructure.
Indonesia, for example, has its own satellite for domestic telephone traffic. Launching one satellite was cheaper
than stringing thousands of undersea cables among the 13,677 islands in the archipelago.

A fifth niche market for satellites is to cover areas where obtaining the right of way for laying fiber is difficult or
unduly expensive.

Sixth, when rapid deployment is critical, as in military communication systems in time of war, satellites win easily.

In short, it looks like the mainstream communication of the future will be terrestrial fiber optics combined with
cellular radio, but for some specialized uses, satellites are better. However, there is one caveat that applies to all
of this: economics. Although fiber offers more bandwidth, it is certainly possible that terrestrial and satellite
communication will compete aggressively on price. If advances in technology radically reduce the cost of
deploying a satellite (e.g., some future space shuttle can toss out dozens of satellites on one launch) or low-orbit
satellites catch on in a big way, it is not certain that fiber will win in all markets.

2.5 The Public Switched Telephone Network

When two computers owned by the same company or organization and located close to each other need to
communicate, it is often easiest just to run a cable between them. LANs work this way. However, when the
distances are large or there are many computers or the cables have to pass through a public road or other public
right of way, the costs of running private cables are usually prohibitive. Furthermore, in just about every country



in the world, stringing private transmission lines across (or underneath) public property is also illegal.
Consequently, the network designers must rely on the existing telecommunication facilities.

These facilities, especially the PSTN (Public Switched Telephone Network), were usually designed many years
ago, with a completely different goal in mind: transmitting the human voice in a more-or-less recognizable form.
Their suitability for use in computer-computer communication is often marginal at best, but the situation is rapidly
changing with the introduction of fiber optics and digital technology. In any event, the telephone system is so
tightly intertwined with (wide area) computer networks, that it is worth devoting some time to studying it.

To see the order of magnitude of the problem, let us make a rough but illustrative comparison of the properties
of a typical computer-computer connection via a local cable and via a dial-up telephone line. A cable running
between two computers can transfer data at 10° bps, maybe more. In contrast, a dial-up line has a maximum
data rate of 56 kbps, a difference of a factor of almost 20,000. That is the difference between a duck waddling
leisurely through the grass and a rocket to the moon. If the dial-up line is replaced by an ADSL connection, there
is still a factor of 1000—2000 difference.

The trouble, of course, is that computer systems designers are used to working with computer systems and
when suddenly confronted with another system whose performance (from their point of view) is 3 or 4 orders of
magnitude worse, they, not surprising, devoted much time and effort to trying to figure out how to use it
efficiently. In the following sections we will describe the telephone system and show how it works. For additional
information about the innards of the telephone system see (Bellamy, 2000).

2.5.1 Structure of the Telephone System

Soon after Alexander Graham Bell patented the telephone in 1876 (just a few hours ahead of his rival, Elisha
Gray), there was an enormous demand for his new invention. The initial market was for the sale of telephones,
which came in pairs. It was up to the customer to string a single wire between them. The electrons returned
through the earth. If a telephone owner wanted to talk to n other telephone owners, separate wires had to be
strung to all n houses. Within a year, the cities were covered with wires passing over houses and trees in a wild
jumble. It became immediately obvious that the model of connecting every telephone to every other telephone,
as shown in Fig. 2-20(a), was not going to work.

Figure 2-20. (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level hierarchy.
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To his credit, Bell saw this and formed the Bell Telephone Company, which opened its first switching office (in
New Haven, Connecticut) in 1878. The company ran a wire to each customer's house or office. To make a call,
the customer would crank the phone to make a ringing sound in the telephone company office to attract the
attention of an operator, who would then manually connect the caller to the callee by using a jumper cable. The
model of a single switching office is illustrated in Fig. 2-20(b).

Pretty soon, Bell System switching offices were springing up everywhere and people wanted to make long-
distance calls between cities, so the Bell system began to connect the switching offices. The original problem
soon returned: to connect every switching office to every other switching office by means of a wire between them
quickly became unmanageable, so second-level switching offices were invented. After a while, multiple second-
level offices were needed, as illustrated in Fig. 2-20(c). Eventually, the hierarchy grew to five levels.



By 1890, the three major parts of the telephone system were in place: the switching offices, the wires between
the customers and the switching offices (by now balanced, insulated, twisted pairs instead of open wires with an
earth return), and the long-distance connections between the switching offices. While there have been
improvements in all three areas since then, the basic Bell System model has remained essentially intact for over
100 years. For a short technical history of the telephone system, see (Hawley, 1991).

Prior to the 1984 breakup of AT&T, the telephone system was organized as a highly-redundant, multilevel
hierarchy. The following description is highly simplified but gives the essential flavor nevertheless. Each
telephone has two copper wires coming out of it that go directly to the telephone company's nearest end office
(also called a local central office). The distance is typically 1 to 10 km, being shorter in cities than in rural areas.
In the United States alone there are about 22,000 end offices. The two-wire connections between each
subscriber's telephone and the end office are known in the trade as the local loop. If the world's local loops were
stretched out end to end, they would extend to the moon and back 1000 times.

At one time, 80 percent of AT&T's capital value was the copper in the local loops. AT&T was then, in effect, the
world's largest copper mine. Fortunately, this fact was not widely known in the investment community. Had it
been known, some corporate raider might have bought AT&T, terminated all telephone service in the United
States, ripped out all the wire, and sold the wire to a copper refiner to get a quick payback.

If a subscriber attached to a given end office calls another subscriber attached to the same end office, the
switching mechanism within the office sets up a direct electrical connection between the two local loops. This
connection remains intact for the duration of the call.

If the called telephone is attached to another end office, a different procedure has to be used. Each end office
has a number of outgoing lines to one or more nearby switching centers, called toll offices (or if they are within
the same local area, tandem offices). These lines are called toll connecting trunks. If both the caller's and
callee's end offices happen to have a toll connecting trunk to the same toll office (a likely occurrence if they are
relatively close by), the connection may be established within the toll office. A telephone network consisting only
of telephones (the small dots), end offices (the large dots), and toll offices (the squares) is shown in Fig. 2-20(c).

If the caller and callee do not have a toll office in common, the path will have to be established somewhere
higher up in the hierarchy. Primary, sectional, and regional offices form a network by which the toll offices are
connected. The toll, primary, sectional, and regional exchanges communicate with each other via high-
bandwidth intertoll trunks (also called interoffice trunks). The number of different kinds of switching centers and
their topology (e.g., can two sectional offices have a direct connection or must they go through a regional
office?) varies from country to country depending on the country's telephone density. Figure 2-21 shows how a
medium-distance connection might be routed.

Figure 2-21. A typical circuit route for a medium-distance call.
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A variety of transmission media are used for telecommunication. Local loops consist of category 3 twisted pairs
nowadays, although in the early days of telephony, uninsulated wires spaced 25 cm apart on telephone poles
were common. Between switching offices, coaxial cables, microwaves, and especially fiber optics are widely
used.

In the past, transmission throughout the telephone system was analog, with the actual voice signal being
transmitted as an electrical voltage from source to destination. With the advent of fiber optics, digital electronics,
and computers, all the trunks and switches are now digital, leaving the local loop as the last piece of analog



technology in the system. Digital transmission is preferred because it is not necessary to accurately reproduce
an analog waveform after it has passed through many amplifiers on a long call. Being able to correctly
distinguish a 0 from a 1 is enough. This property makes digital transmission more reliable than analog. It is also
cheaper and easier to maintain.

In summary, the telephone system consists of three major components:

1. Local loops (analog twisted pairs going into houses and businesses).
2. Trunks (digital fiber optics connecting the switching offices).
3. Switching offices (where calls are moved from one trunk to another).

After a short digression on the politics of telephones, we will come back to each of these three components in
some detail. The local loops provide everyone access to the whole system, so they are critical. Unfortunately,
they are also the weakest link in the system. For the long-haul trunks, the main issue is how to collect multiple
calls together and send them out over the same fiber. This subject is called multiplexing, and we will study three
different ways to do it. Finally, there are two fundamentally different ways of doing switching; we will look at both.

2.5.2 The Politics of Telephones

For decades prior to 1984, the Bell System provided both local and long distance service throughout most of the
United States. In the 1970s, the U.S. Federal Government came to believe that this was an illegal monopoly and
sued to break it up. The government won, and on January 1, 1984, AT&T was broken up into AT&T Long Lines,
23 BOCs (Bell Operating Companies), and a few other pieces. The 23 BOCs were grouped into seven regional
BOCs (RBOCs) to make them economically viable. The entire nature of telecommunication in the United States
was changed overnight by court order (not by an act of Congress).

The exact details of the divestiture were described in the so-called MFJ (Modified Final Judgment, an oxymoron
if ever there was one—if the judgment could be modified, it clearly was not final). This event led to increased
competition, better service, and lower long distance prices to consumers and businesses. However, prices for
local service rose as the cross subsidies from long-distance calling were eliminated and local service had to
become self supporting. Many other countries have now introduced competition along similar lines.

To make it clear who could do what, the United States was divided up into 164 LATAs (Local Access and
Transport Areas). Very roughly, a LATA is about as big as the area covered by one area code. Within a LATA,
there was one LEC (Local Exchange Carrier) that had a monopoly on traditional telephone service within its
area. The most important LECs were the BOCs, although some LATAs contained one or more of the 1500
independent telephone companies operating as LECs.

All inter-LATA traffic was handled by a different kind of company, an IXC (IntereXchange Carrier). Originally,
AT&T Long Lines was the only serious IXC, but now WorldCom and Sprint are well-established competitors in
the IXC business. One of the concerns at the breakup was to ensure that all the IXCs would be treated equally in
terms of line quality, tariffs, and the number of digits their customers would have to dial to use them. The way
this is handled is illustrated in Fig. 2-22. Here we see three example LATAs, each with several end offices.
LATAs 2 and 3 also have a small hierarchy with tandem offices (intra-LATA toll offices).

Figure 2-22. The relationship of LATAs, LECs, and IXCs. All the circles are LEC switching offices. Each
hexagon belongs to the IXC whose number is in it.
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Any IXC that wishes to handle calls originating in a LATA can build a switching office called a POP (Point of
Presence) there. The LEC is required to connect each IXC to every end office, either directly, as in LATAs 1 and
3, or indirectly, as in LATA 2. Furthermore, the terms of the connection, both technical and financial, must be
identical for all IXCs. In this way, a subscriber in, say, LATA 1, can choose which IXC to use for calling
subscribers in LATA 3.

As part of the MFJ, the IXCs were forbidden to offer local telephone service and the LECs were forbidden to
offer inter-LATA telephone service, although both were free to enter any other business, such as operating fried
chicken restaurants. In 1984, that was a fairly unambiguous statement. Unfortunately, technology has a funny
way of making the law obsolete. Neither cable television nor mobile phones were covered by the agreement. As
cable television went from one way to two way and mobile phones exploded in popularity, both LECs and IXCs
began buying up or merging with cable and mobile operators.

By 1995, Congress saw that trying to maintain a distinction between the various kinds of companies was no
longer tenable and drafted a bill to allow cable TV companies, local telephone companies, long-distance carriers,
and mobile operators to enter one another's businesses. The idea was that any company could then offer its
customers a single integrated package containing cable TV, telephone, and information services and that
different companies would compete on service and price. The bill was enacted into law in February 1996. As a
result, some BOCs became IXCs and some other companies, such as cable television operators, began offering
local telephone service in competition with the LECs.

One interesting property of the 1996 law is the requirement that LECs implement local nhumber portability. This
means that a customer can change local telephone companies without having to get a new telephone number.
This provision removes a huge hurdle for many people and makes them much more inclined to switch LECs,
thus increasing competition. As a result, the U.S. telecommunications landscape is currently undergoing a
radical restructuring. Again, many other countries are starting to follow suit. Often other countries wait to see
how this kind of experiment works out in the U.S. If it works well, they do the same thing; if it works badly, they
try something else.

2.5.3 The Local Loop: Modems, ADSL, and Wireless

It is now time to start our detailed study of how the telephone system works. The main parts of the system are
illustrated in Fig. 2-23. Here we see the local loops, the trunks, and the toll offices and end offices, both of which
contain switching equipment that switches calls. An end office has up to 10,000 local loops (in the U.S. and other
large countries). In fact, until recently, the area code + exchange indicated the end office, so (212) 601-xxxx was
a specific end office with 10,000 subscribers, numbered 0000 through 9999. With the advent of competition for
local service, this system was no longer tenable because multiple companies wanted to own the end office code.
Also, the number of codes was basically used up, so complex mapping schemes had to be introduced.



Figure 2-23. The use of both analog and digital transmission for a computer to computer call.
Conversion is done by the modems and codecs.
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Let us begin with the part that most people are familiar with: the two-wire local loop coming from a telephone
company end office into houses and small businesses. The local loop is also frequently referred to as the "last
mile," although the length can be up to several miles. It has used analog signaling for over 100 years and is
likely to continue doing so for some years to come, due to the high cost of converting to digital. Nevertheless,
even in this last bastion of analog transmission, change is taking place. In this section we will study the
traditional local loop and the new developments taking place here, with particular emphasis on data
communication from home computers.

When a computer wishes to send digital data over an analog dial-up line, the data must first be converted to
analog form for transmission over the local loop. This conversion is done by a device called a modem,
something we will study shortly. At the telephone company end office the data are converted to digital form for
transmission over the long-haul trunks.

If the other end is a computer with a modem, the reverse conversion—digital to analog—is needed to traverse
the local loop at the destination. This arrangement is shown in Fig. 2-23 for ISP 1 (Internet Service Provider),
which has a bank of modems, each connected to a different local loop. This ISP can handle as many
connections as it has modems (assuming its server or servers have enough computing power). This
arrangement was the normal one until 56-kbps modems appeared, for reasons that will become apparent
shortly.

Analog signaling consists of varying a voltage with time to represent an information stream. If transmission
media were perfect, the receiver would receive exactly the same signal that the transmitter sent. Unfortunately,
media are not perfect, so the received signal is not the same as the transmitted signal. For digital data, this
difference can lead to errors.

Transmission lines suffer from three major problems: attenuation, delay distortion, and noise. Attenuation is the
loss of energy as the signal propagates outward. The loss is expressed in decibels per kilometer. The amount of
energy lost depends on the frequency. To see the effect of this frequency dependence, imagine a signal not as a
simple waveform, but as a series of Fourier components. Each component is attenuated by a different amount,
which results in a different Fourier spectrum at the receiver.

To make things worse, the different Fourier components also propagate at different speeds in the wire. This
speed difference leads to distortion of the signal received at the other end.

Another problem is noise, which is unwanted energy from sources other than the transmitter. Thermal noise is
caused by the random motion of the electrons in a wire and is unavoidable. Crosstalk is caused by inductive



coupling between two wires that are close to each other. Sometimes when talking on the telephone, you can
hear another conversation in the background. That is crosstalk. Finally, there is impulse noise, caused by spikes
on the power line or other causes. For digital data, impulse noise can wipe out one or more bits.

Modems

Due to the problems just discussed, especially the fact that both attenuation and propagation speed are
frequency dependent, it is undesirable to have a wide range of frequencies in the signal. Unfortunately, the
square waves used in digital signals have a wide frequency spectrum and thus are subject to strong attenuation
and delay distortion. These effects make baseband (DC) signaling unsuitable except at slow speeds and over
short distances.

To get around the problems associated with DC signaling, especially on telephone lines, AC signaling is used. A
continuous tone in the 1000 to 2000-Hz range, called a sine wave carrier, is introduced. Its amplitude, frequency,
or phase can be modulated to transmit information. In amplitude modulation, two different amplitudes are used
to represent 0 and 1, respectively. In frequency modulation, also known as frequency shift keying, two (or more)
different tones are used. (The term keying is also widely used in the industry as a synonym for modulation.) In
the simplest form of phase modulation, the carrier wave is systematically shifted O or 180 degrees at uniformly
spaced intervals. A better scheme is to use shifts of 45, 135, 225, or 315 degrees to transmit 2 bits of information
per time interval. Also, always requiring a phase shift at the end of every time interval, makes it is easier for the
receiver to recognize the boundaries of the time intervals.

Figure 2-24 illustrates the three forms of modulation. In Fig. 2-24(a) one of the amplitudes is honzero and one is
zero. In Fig. 2-24(b) two frequencies are used. In Fig. 2-24(c) a phase shift is either present or absent at each bit
boundary. A device that accepts a serial stream of bits as input and produces a carrier modulated by one (or
more) of these methods (or vice versa) is called a modem (for modulator-demodulator). The modem is inserted
between the (digital) computer and the (analog) telephone system.

Figure 2-24. (a) A binary signal. (b) Amplitude modulation. (c) Frequency modulation. (d) Phase
modulation.
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To go to higher and higher speeds, it is not possible to just keep increasing the sampling rate. The Nyquist
theorem says that even with a perfect 3000-Hz line (which a dial-up telephone is decidedly not), there is no point
in sampling faster than 6000 Hz. In practice, most modems sample 2400 times/sec and focus on getting more
bits per sample.

The number of samples per second is measured in baud. During each baud, one symbol is sent. Thus, an n-
baud line transmits n symbols/sec. For example, a 2400-baud line sends one symbol about every 416.667 fisec.
If the symbol consists of 0 volts for a logical 0 and 1 volt for a logical 1, the bit rate is 2400 bps. If, however, the
voltages 0, 1, 2, and 3 volts are used, every symbol consists of 2 bits, so a 2400-baud line can transmit 2400
symbols/sec at a data rate of 4800 bps. Similarly, with four possible phase shifts, there are also 2 bits/symbol, so
again here the bit rate is twice the baud rate. The latter technique is widely used and called QPSK (Quadrature
Phase Shift Keying).

The concepts of bandwidth, baud, symbol, and bit rate are commonly confused, so let us restate them here. The
bandwidth of a medium is the range of frequencies that pass through it with minimum attenuation. It is a physical
property of the medium (usually from 0 to some maximum frequency) and measured in Hz. The baud rate is the
number of samples/sec made. Each sample sends one piece of information, that is, one symbol. The baud rate
and symbol rate are thus the same. The modulation technique (e.g., QPSK) determines the number of
bits/symbol. The bit rate is the amount of information sent over the channel and is equal to the number of
symbols/sec times the number of bits/symbol.

All advanced modems use a combination of modulation techniques to transmit multiple bits per baud. Often
multiple amplitudes and multiple phase shifts are combined to transmit several bits/symbol. In Fig. 2-25(a), we
see dots at 45, 135, 225, and 315 degrees with constant amplitude (distance from the origin). The phase of a dot
is indicated by the angle a line from it to the origin makes with the positive x-axis. Fig. 2-25(a) has four valid
combinations and can be used to transmit 2 bits per symbol. It is QPSK.

Figure 2-25. (a) QPSK. (b) QAM-16. (c) QAM-64.
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In Fig. 2-25(b) we see a different modulation scheme, in which four amplitudes and four phases are used, for a
total of 16 different combinations. This modulation scheme can be used to transmit 4 bits per symbol. It is called
QAM-16 (Quadrature Amplitude Modulation). Sometimes the term 16-QAM is used instead. QAM-16 can be
used, for example, to transmit 9600 bps over a 2400-baud line.

Figure 2-25(c) is yet another modulation scheme involving amplitude and phase. It allows 64 different
combinations, so 6 bits can be transmitted per symbol. It is called QAM-64. Higher-order QAMs also are used.

Diagrams such as those of Fig. 2-25, which show the legal combinations of amplitude and phase, are called
constellation diagrams. Each high-speed modem standard has its own constellation pattern and can talk only to
other modems that use the same one (although most modems can emulate all the slower ones).

With many points in the constellation pattern, even a small amount of noise in the detected amplitude or phase
can result in an error and, potentially, many bad bits. To reduce the chance of an error, standards for the higher
speeds modems do error correction by adding extra bits to each sample. The schemes are known as TCM
(Trellis Coded Modulation). Thus, for example, the V.32 modem standard uses 32 constellation points to transmit
4 data bits and 1 parity bit per symbol at 2400 baud to achieve 9600 bps with error correction. Its constellation



pattern is shown in Fig. 2-26(a). The decision to "rotate" around the origin by 45 degrees was done for
engineering reasons; the rotated and unrotated constellations have the same information capacity.

Figure 2-26. (a) V.32 for 9600 bps. (b) V32 bis for 14,400 bps.

The next step above 9600 bps is 14,400 bps. It is called V.32 bis. This speed is achieved by transmitting 6 data
bits and 1 parity bit per sample at 2400 baud. Its constellation pattern has 128 points when QAM-128 is used
and is shown in Fig. 2-26(b). Fax modems use this speed to transmit pages that have been scanned in as bit
maps. QAM-256 is not used in any standard telephone modems, but it is used on cable networks, as we shall
see.

The next telephone modem after V.32 bis is V.34, which runs at 28,800 bps at 2400 baud with 12 data
bits/symbol. The final modem in this series is V.34 bis which uses 14 data bits/symbol at 2400 baud to achieve
33,600 bps.

To increase the effective data rate further, many modems compress the data before transmitting it, to get an
effective data rate higher than 33,600 bps. On the other hand, nearly all modems test the line before starting to
transmit user data, and if they find the quality lacking, cut back to a speed lower than the rated maximum. Thus,
the effective modem speed observed by the user can be lower, equal to, or higher than the official rating.

All modern modems allow traffic in both directions at the same time (by using different frequencies for different
directions). A connection that allows traffic in both directions simultaneously is called full duplex. A two-lane road
is full duplex. A connection that allows traffic either way, but only one way at a time is called half duplex. A single
railroad track is half duplex. A connection that allows traffic only one way is called simplex. A one-way street is
simplex. Another example of a simplex connection is an optical fiber with a laser on one end and a light detector
on the other end.

The reason that standard modems stop at 33,600 is that the Shannon limit for the telephone system is about 35
kbps, so going faster than this would violate the laws of physics (department of thermodynamics). To find out
whether 56-kbps modems are theoretically possible, stay tuned.

But why is the theoretical limit 35 kbps? It has to do with the average length of the local loops and the quality of
these lines. The 35 kbps is determined by the average length of the local loops. In Fig. 2-23, a call originating at
the computer on the left and terminating at ISP 1 goes over two local loops as an analog signal, once at the
source and once at the destination. Each of these adds noise to the signal. If we could get rid of one of these
local loops, the maximum rate would be doubled.

ISP 2 does precisely that. It has a pure digital feed from the nearest end office. The digital signal used on the
trunks is fed directly to ISP 2, eliminating the codecs, modems, and analog transmission on its end. Thus, when
one end of the connection is purely digital, as it is with most ISPs now, the maximum data rate can be as high as
70 kbps. Between two home users with modems and analog lines, the maximum is 33.6 kbps.



The reason that 56 kbps modems are in use has to do with the Nyquist theorem. The telephone channel is about
4000 Hz wide (including the guard bands). The maximum number of independent samples per second is thus
8000. The number of bits per sample in the U.S. is 8, one of which is used for control purposes, allowing 56,000
bit/sec of user data. In Europe, all 8 bits are available to users, so 64,000-bit/'sec modems could have been
used, but to get international agreement on a standard, 56,000 was chosen.

This modem standard is called V.90. It provides for a 33.6-kbps upstream channel (user to ISP), but a 56 kbps
downstream channel (ISP to user) because there is usually more data transport from the ISP to the user than the
other way (e.g., requesting a Web page takes only a few bytes, but the actual page could be megabytes). In
theory, an upstream channel wider than 33.6 kbps would have been possible, but since many local loops are too
noisy for even 33.6 kbps, it was decided to allocate more of the bandwidth to the downstream channel to
increase the chances of it actually working at 56 kbps.

The next step beyond V.90 is V.92. These modems are capable of 48 kbps on the upstream channel if the line
can handle it. They also determine the appropriate speed to use in about half of the usual 30 seconds required
by older modems. Finally, they allow an incoming telephone call to interrupt an Internet session, provided that
the line has call waiting service.

Digital Subscriber Lines

When the telephone industry finally got to 56 kbps, it patted itself on the back for a job well done. Meanwhile, the
cable TV industry was offering speeds up to 10 Mbps on shared cables, and satellite companies were planning
to offer upward of 50 Mbps. As Internet access became an increasingly important part of their business, the
telephone companies (LECs) began to realize they needed a more competitive product. Their answer was to
start offering new digital services over the local loop. Services with more bandwidth than standard telephone
service are sometimes called broadband, although the term really is more of a marketing concept than a specific
technical concept.

Initially, there were many overlapping offerings, all under the general name of xDSL (Digital Subscriber Line), for
various X. Below we will discuss these but primarily focus on what is probably going to become the most popular
of these services, ADSL (Asymmetric DSL). Since ADSL is still being developed and not all the standards are
fully in place, some of the details given below may change in time, but the basic picture should remain valid. For
more information about ADSL, see (Summers, 1999; and Vetter et al., 2000).

The reason that modems are so slow is that telephones were invented for carrying the human voice and the
entire system has been carefully optimized for this purpose. Data have always been stepchildren. At the point
where each local loop terminates in the end office, the wire runs through a filter that attenuates all frequencies
below 300 Hz and above 3400 Hz. The cutoff is not sharp—300 Hz and 3400 Hz are the 3 dB points—so the
bandwidth is usually quoted as 4000 Hz even though the distance between the 3 dB points is 3100 Hz. Data are
thus also restricted to this narrow band.

The trick that makes xDSL work is that when a customer subscribes to it, the incoming line is connected to a
different kind of switch, one that does not have this filter, thus making the entire capacity of the local loop
available. The limiting factor then becomes the physics of the local loop, not the artificial 3100 Hz bandwidth
created by the filter.

Unfortunately, the capacity of the local loop depends on several factors, including its length, thickness, and
general quality. A plot of the potential bandwidth as a function of distance is given in Fig. 2-27. This figure
assumes that all the other factors are optimal (new wires, modest bundles, etc.).

Figure 2-27. Bandwidth versus distance over category 3 UTP for DSL.
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The implication of this figure creates a problem for the telephone company. When it picks a speed to offer, it is
simultaneously picking a radius from its end offices beyond which the service cannot be offered. This means that
when distant customers try to sign up for the service, they may be told "Thanks a lot for your interest, but you
live 100 meters too far from the nearest end office to get the service. Could you please move?" The lower the
chosen speed, the larger the radius and the more customers covered. But the lower the speed, the less
attractive the service and the fewer the people who will be willing to pay for it. This is where business meets
technology. (One potential solution is building mini end offices out in the neighborhoods, but that is an expensive
proposition.)

The xDSL services have all been designed with certain goals in mind. First, the services must work over the
existing category 3 twisted pair local loops. Second, they must not affect customers' existing telephones and fax
machines. Third, they must be much faster than 56 kbps. Fourth, they should be always on, with just a monthly
charge but no per-minute charge.

The initial ADSL offering was from AT&T and worked by dividing the spectrum available on the local loop, which
is about 1.1 MHz, into three frequency bands: POTS (Plain Old Telephone Service) upstream (user to end office)
and downstream (end office to user). The technique of having multiple frequency bands is called frequency
division multiplexing; we will study it in detail in a later section. Subsequent offerings from other providers have
taken a different approach, and it appears this one is likely to win out, so we will describe it below.

The alternative approach, called DMT (Discrete MultiTone), is illustrated in Fig. 2-28. In effect, what it does is
divide the available 1.1 MHz spectrum on the local loop into 256 independent channels of 4312.5 Hz each.
Channel 0 is used for POTS. Channels 1-5 are not used, to keep the voice signal and data signals from
interfering with each other. Of the remaining 250 channels, one is used for upstream control and one is used for
downstream control. The rest are available for user data.

Figure 2-28. Operation of ADSL using discrete multitone modulation.
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In principle, each of the remaining channels can be used for a full-duplex data stream, but harmonics, crosstalk,
and other effects keep practical systems well below the theoretical limit. It is up to the provider to determine how
many channels are used for upstream and how many for downstream. A 50-50 mix of upstream and
downstream is technically possible, but most providers allocate something like 80%—-90% of the bandwidth to the
downstream channel since most users download more data than they upload. This choice gives rise to the "A" in



ADSL. A common split is 32 channels for upstream and the rest downstream. It is also possible to have a few of
the highest upstream channels be bidirectional for increased bandwidth, although making this optimization
requires adding a special circuit to cancel echoes.

The ADSL standard (ANSI T1.413 and ITU G.992.1) allows speeds of as much as 8 Mbps downstream and 1
Mbps upstream. However, few providers offer this speed. Typically, providers offer 512 kbps downstream and 64
kbps upstream (standard service) and 1 Mbps downstream and 256 kbps upstream (premium service).

Within each channel, a modulation scheme similar to V.34 is used, although the sampling rate is 4000 baud
instead of 2400 baud. The line quality in each channel is constantly monitored and the data rate adjusted
continuously as needed, so different channels may have different data rates. The actual data are sent with QAM
modulation, with up to 15 bits per baud, using a constellation diagram analogous to that of Fig. 2-25(b). With, for
example, 224 downstream channels and 15 bits/baud at 4000 baud, the downstream bandwidth is 13.44 Mbps.
In practice, the signal-to-noise ratio is never good enough to achieve this rate, but 8 Mbps is possible on short
runs over high-quality loops, which is why the standard goes up this far.

A typical ADSL arrangement is shown in Fig. 2-29. In this scheme, a telephone company technician must install
a NID (Network Interface Device) on the customer's premises. This small plastic box marks the end of the
telephone company's property and the start of the customer's property. Close to the NID (or sometimes
combined with it) is a splitter, an analog filter that separates the 0-4000 Hz band used by POTS from the data.
The POTS signal is routed to the existing telephone or fax machine, and the data signal is routed to an ADSL
modem. The ADSL modem is actually a digital signal processor that has been set up to act as 250 QAM
modems operating in parallel at different frequencies. Since most current ADSL modems are external, the
computer must be connected to it at high speed. Usually, this is done by putting an Ethernet card in the
computer and operating a very short two-node Ethernet containing only the computer and ADSL modem.
Occasionally the USB port is used instead of Ethernet. In the future, internal ADSL modem cards will no doubt
become available.

Figure 2-29. A typical ADSL equipment configuration.
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At the other end of the wire, on the end office side, a corresponding splitter is installed. Here the voice portion of
the signal is filtered out and sent to the normal voice switch. The signal above 26 kHz is routed to a new kind of
device called a DSLAM (Digital Subscriber Line Access Multiplexer), which contains the same kind of digital
signal processor as the ADSL modem. Once the digital signal has been recovered into a bit stream, packets are
formed and sent off to the ISP.

This complete separation between the voice system and ADSL makes it relatively easy for a telephone company
to deploy ADSL. All that is needed is buying a DSLAM and splitter and attaching the ADSL subscribers to the



splitter. Other high-bandwidth services (e.g., ISDN) require much greater changes to the existing switching
equipment.

One disadvantage of the design of Fig. 2-29 is the presence of the NID and splitter on the customer premises.
Installing these can only be done by a telephone company technician, necessitating an expensive "truck roll"
(i.e., sending a technician to the customer's premises). Therefore, an alternative splitterless design has also
been standardized. It is informally called G.lite but the ITU standard number is G.992.2. It is the same as Fig. 2-
29 but without the splitter. The existing telephone line is used as is. The only difference is that a microfilter has to
be inserted into each telephone jack between the telephone or ADSL modem and the wire. The microfilter for the
telephone is a low-pass filter eliminating frequencies above 3400 Hz; the microfilter for the ADSL modem is a
high-pass filter eliminating frequencies below 26 kHz. However this system is not as reliable as having a splitter,
so G.lite can be used only up to 1.5 Mbps (versus 8 Mbps for ADSL with a splitter). G.lite still requires a splitter
in the end office, however, but that installation does not require thousands of truck rolls.

ADSL is just a physical layer standard. What runs on top of it depends on the carrier. Often the choice is ATM
due to ATM's ability to manage quality of service and the fact that many telephone companies run ATM in the
core network.

Wireless Local Loops

Since 1996 in the U.S. and a bit later in other countries, companies that wish to compete with the entrenched
local telephone company (the former monopolist), called an ILEC (Incumbent LEC), are free to do so. The most
likely candidates are long-distance telephone companies (IXCs). Any IXC wishing to get into the local phone
business in some city must do the following things. First, it must buy or lease a building for its first end office in
that city. Second, it must fill the end office with telephone switches and other equipment, all of which are
available as off-the-shelf products from various vendors. Third, it must run a fiber between the end office and its
nearest toll office so the new local customers will have access to its national network. Fourth, it must acquire
customers, typically by advertising better service or lower prices than those of the ILEC.

Then the hard part begins. Suppose that some customers actually show up. How is the new local phone
company, called a CLEC (Competitive LEC) going to connect customer telephones and computers to its shiny
new end office? Buying the necessary rights of way and stringing wires or fibers is prohibitively expensive. Many
CLECs have discovered a cheaper alternative to the traditional twisted-pair local loop: the WLL (Wireless Local
Loop).

In a certain sense, a fixed telephone using a wireless local loop is a bit like a mobile phone, but there are three
crucial technical differences. First, the wireless local loop customer often wants high-speed Internet connectivity,
often at speeds at least equal to ADSL. Second, the new customer probably does not mind having a CLEC
technician install a large directional antenna on his roof pointed at the CLEC's end office. Third, the user does
not move, eliminating all the problems with mobility and cell handoff that we will study later in this chapter. And
thus a new industry is born: fixed wireless (local telephone and Internet service run by CLECs over wireless local
loops).

Although WLLs began serious operation in 1998, we first have to go back to 1969 to see the origin. In that year
the FCC allocated two television channels (at 6 MHz each) for instructional television at 2.1 GHz. In subsequent
years, 31 more channels were added at 2.5 GHz for a total of 198 MHz.

Instructional television never took off and in 1998, the FCC took the frequencies back and allocated them to two-
way radio. They were immediately seized upon for wireless local loops. At these frequencies, the microwaves
are 10-12 cm long. They have a range of about 50 km and can penetrate vegetation and rain moderately well.
The 198 MHz of new spectrum was immediately put to use for wireless local loops as a service called MMDS
(Multichannel Multipoint Distribution Service). MMDS can be regarded as a MAN (Metropolitan Area Network),
as can its cousin LMDS (discussed below).

The big advantage of this service is that the technology is well established and the equipment is readily
available. The disadvantage is that the total bandwidth available is modest and must be shared by many users
over a fairly large geographic area.



The low bandwidth of MMDS led to interest in millimeter waves as an alternative. At frequencies of 28-31 GHz in
the U.S. and 40 GHz in Europe, no frequencies were allocated because it is difficult to build silicon integrated
circuits that operate so fast. That problem was solved with the invention of gallium arsenide integrated circuits,
opening up millimeter bands for radio communication. The FCC responded to the demand by allocating 1.3 GHz
to a new wireless local loop service called LMDS (Local Multipoint Distribution Service). This allocation is the
single largest chunk of bandwidth ever allocated by the FCC for any one use. A similar chunk is being allocated
in Europe, but at 40 GHz.

The operation of LMDS is shown in Fig. 2-30. Here a tower is shown with multiple antennas on it, each pointing
in a different direction. Since millimeter waves are highly directional, each antenna defines a sector, independent
of the other ones. At this frequency, the range is 2-5 km, which means that many towers are needed to cover a
city.

Figure 2-30. Architecture of an LMDS system.
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Like ADSL, LMDS uses an asymmetric bandwidth allocation favoring the downstream channel. With current
technology, each sector can have 36 Gbps downstream and 1 Mbps upstream, shared among all the users in
that sector. If each active user downloads three 5-KB pages per minute, the user is occupying an average of
2000 bps of spectrum, which allows a maximum of 18,000 active users per sector. To keep the delay
reasonable, no more than 9000 active users should be supported, though. With four sectors, as shown in Fig. 2-
30, an active user population of 36,000 could be supported. Assuming that one in three customers is on line
during peak periods, a single tower with four antennas could serve 100,000 people within a 5-km radius of the
tower. These calculations have been done by many potential CLECs, some of whom have concluded that for a
modest investment in millimeter-wave towers, they can get into the local telephone and Internet business and
offer users data rates comparable to cable TV and at a lower price.

LMDS has a few problems, however. For one thing, millimeter waves propagate in straight lines, so there must
be a clear line of sight between the roof top antennas and the tower. For another, leaves absorb these waves
well, so the tower must be high enough to avoid having trees in the line of sight. And what may have looked like
a clear line of sight in December may not be clear in July when the trees are full of leaves. Rain also absorbs
these waves. To some extent, errors introduced by rain can be compensated for with error correcting codes or
turning up the power when it is raining. Nevertheless, LMDS service is more likely to be rolled out first in dry
climates, say, in Arizona rather than in Seattle.

Wireless local loops are not likely to catch on unless there are standards, to encourage equipment vendors to
produce products and to ensure that customers can change CLECs without having to buy new equipment. To
provide this standardization, IEEE set up a committee called 802.16 to draw up a standard for LMDS. The
802.16 standard was published in April 2002. IEEE calls 802.16 a wireless MAN.



IEEE 802.16 was designed for digital telephony, Internet access, connection of two remote LANS, television and
radio broadcasting, and other uses. We will look at it in more detail in Chap. 4.

2.5.4 Trunks and Multiplexing

Economies of scale play an important role in the telephone system. It costs essentially the same amount of
money to install and maintain a high-bandwidth trunk as a low-bandwidth trunk between two switching offices
(i.e., the costs come from having to dig the trench and not from the copper wire or optical fiber). Consequently,
telephone companies have developed elaborate schemes for multiplexing many conversations over a single
physical trunk. These multiplexing schemes can be divided into two basic categories: FDM (Frequency Division
Multiplexing) and TDM (Time Division Multiplexing). In FDM, the frequency spectrum is divided into frequency
bands, with each user having exclusive possession of some band. In TDM, the users take turns (in a round-robin
fashion), each one periodically getting the entire bandwidth for a little burst of time.

AM radio broadcasting provides illustrations of both kinds of multiplexing. The allocated spectrum is about 1
MHz, roughly 500 to 1500 kHz. Different frequencies are allocated to different logical channels (stations), each
operating in a portion of the spectrum, with the interchannel separation great enough to prevent interference.
This system is an example of frequency division multiplexing. In addition (in some countries), the individual
stations have two logical subchannels: music and advertising. These two alternate in time on the same
frequency, first a burst of music, then a burst of advertising, then more music, and so on. This situation is time
division multiplexing.

Below we will examine frequency division multiplexing. After that we will see how FDM can be applied to fiber
optics (wavelength division multiplexing). Then we will turn to TDM, and end with an advanced TDM system
used for fiber optics (SONET).

Frequency Division Multiplexing

Figure 2-31 shows how three voice-grade telephone channels are multiplexed using FDM. Filters limit the usable
bandwidth to about 3100 Hz per voice-grade channel. When many channels are multiplexed together, 4000 Hz
is allocated to each channel to keep them well separated. First the voice channels are raised in frequency, each
by a different amount. Then they can be combined because no two channels now occupy the same portion of
the spectrum. Notice that even though there are gaps (guard bands) between the channels, there is some
overlap between adjacent channels because the filters do not have sharp edges. This overlap means that a
strong spike at the edge of one channel will be felt in the adjacent one as nonthermal noise.

Figure 2-31. Frequency division multiplexing. (a) The original bandwidths. (b) The bandwidths raised in
frequency. (c) The multiplexed channel.
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The FDM schemes used around the world are to some degree standardized. A widespread standard is twelve
4000-Hz voice channels multiplexed into the 60 to 108 kHz band. This unit is called a group. The 12-kHz to 60-
kHz band is sometimes used for another group. Many carriers offer a 48- to 56-kbps leased line service to
customers, based on the group. Five groups (60 voice channels) can be multiplexed to form a supergroup. The
next unit is the mastergroup, which is five supergroups (CCITT standard) or ten supergroups (Bell system).
Other standards of up to 230,000 voice channels also exist.

Wavelength Division Multiplexing

For fiber optic channels, a variation of frequency division multiplexing is used. It is called WDM (Wavelength
Division Multiplexing). The basic principle of WDM on fibers is depicted in Fig. 2-32. Here four fibers come
together at an optical combiner, each with its energy present at a different wavelength. The four beams are
combined onto a single shared fiber for transmission to a distant destination. At the far end, the beam is split up
over as many fibers as there were on the input side. Each output fiber contains a short, specially-constructed
core that filters out all but one wavelength. The resulting signals can be routed to their destination or recombined
in different ways for additional multiplexed transport.

Figure 2-32. Wavelength division multiplexing.
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There is really nothing new here. This is just frequency division multiplexing at very high frequencies. As long as
each channel has its own frequency (i.e., wavelength) range and all the ranges are disjoint, they can be
multiplexed together on the long-haul fiber. The only difference with electrical FDM is that an optical system
using a diffraction grating is completely passive and thus highly reliable.

WDM technology has been progressing at a rate that puts computer technology to shame. WDM was invented
around 1990. The first commercial systems had eight channels of 2.5 Gbps per channel. By 1998, systems with
40 channels of 2.5 Gbps were on the market. By 2001, there were products with 96 channels of 10 Gbps, for a
total of 960 Gbps. This is enough bandwidth to transmit 30 full-length movies per second (in MPEG-2). Systems
with 200 channels are already working in the laboratory. When the number of channels is very large and the
wavelengths are spaced close together, for example, 0.1 nm, the system is often referred to as DWDM (Dense
WDM).

It should be noted that the reason WDM is popular is that the energy on a single fiber is typically only a few
gigahertz wide because it is currently impossible to convert between electrical and optical media any faster. By
running many channels in parallel on different wavelengths, the aggregate bandwidth is increased linearly with
the number of channels. Since the bandwidth of a single fiber band is about 25,000 GHz (see Fig. 2-6), there is
theoretically room for 2500 10-Gbps channels even at 1 bit/Hz (and higher rates are also possible).

Another new development is all optical amplifiers. Previously, every 100 km it was necessary to split up all the
channels and convert each one to an electrical signal for amplification separately before reconverting to optical



and combining them. Nowadays, all optical amplifiers can regenerate the entire signal once every 1000 km
without the need for multiple opto-electrical conversions.

In the example of Fig. 2-32, we have a fixed wavelength system. Bits from input fiber 1 go to output fiber 3, bits
from input fiber 2 go to output fiber 1, etc. However, it is also possible to build WDM systems that are switched.
In such a device, the output filters are tunable using Fabry-Perot or Mach-Zehnder interferometers. For more
information about WDM and its application to Internet packet switching, see (Elmirghani and Mouftah, 2000;
Hunter and Andonovic, 2000; and Listani et al., 2001).

Time Division Multiplexing

WDM technology is wonderful, but there is still a lot of copper wire in the telephone system, so let us turn back to
it for a while. Although FDM is still used over copper wires or microwave channels, it requires analog circuitry
and is not amenable to being done by a computer. In contrast, TDM can be handled entirely by digital
electronics, so it has become far more widespread in recent years. Unfortunately, it can only be used for digital
data. Since the local loops produce analog signals, a conversion is needed from analog to digital in the end
office, where all the individual local loops come together to be combined onto outgoing trunks.

We will now look at how multiple analog voice signals are digitized and combined onto a single outgoing digital
trunk. Computer data sent over a modem are also analog, so the following description also applies to them. The
analog signals are digitized in the end office by a device called a codec (coder-decoder), producing a series of 8-
bit numbers. The codec makes 8000 samples per second (125 psec/sample) because the Nyquist theorem says
that this is sufficient to capture all the information from the 4-kHz telephone channel bandwidth. At a lower
sampling rate, information would be lost; at a higher one, no extra information would be gained. This technique
is called PCM (Pulse Code Modulation). PCM forms the heart of the modern telephone system. As a
consequence, virtually all time intervals within the telephone system are multiples of 125 pusec.

When digital transmission began emerging as a feasible technology, CCITT was unable to reach agreement on
an international standard for PCM. Consequently, a variety of incompatible schemes are now in use in different
countries around the world.

The method used in North America and Japan is the T1 carrier, depicted in Fig. 2-33. (Technically speaking, the
format is called DS1 and the carrier is called T1, but following widespread industry tradition, we will not make
that subtle distinction here.) The T1 carrier consists of 24 voice channels multiplexed together. Usually, the
analog signals are sampled on a round-robin basis with the resulting analog stream being fed to the codec rather
than having 24 separate codecs and then merging the digital output. Each of the 24 channels, in turn, gets to
insert 8 bits into the output stream. Seven bits are data and one is for control, yielding 7 x 8000 = 56,000 bps of
data, and 1 x 8000 = 8000 bps of signaling information per channel.

Figure 2-33. The T1 carrier (1.544 Mbps).
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A frame consists of 24 x 8 = 192 bits plus one extra bit for framing, yielding 193 bits every 125 usec. This gives a
gross data rate of 1.544 Mbps. The 193rd bit is used for frame synchronization. It takes on the pattern
0101010101 . ... Normally, the receiver keeps checking this bit to make sure that it has not lost synchronization.
If it does get out of sync, the receiver can scan for this pattern to get resynchronized. Analog customers cannot
generate the bit pattern at all because it corresponds to a sine wave at 4000 Hz, which would be filtered out.
Digital customers can, of course, generate this pattern, but the odds are against its being present when the
frame slips. When a T1 system is being used entirely for data, only 23 of the channels are used for data. The
24th one is used for a special synchronization pattern, to allow faster recovery in the event that the frame slips.

When CCITT finally did reach agreement, they felt that 8000 bps of signaling information was far too much, so its
1.544-Mbps standard is based on an 8- rather than a 7-bit data item; that is, the analog signal is quantized into
256 rather than 128 discrete levels. Two (incompatible) variations are provided. In common-channel signaling,
the extra bit (which is attached onto the rear rather than the front of the 193-bit frame) takes on the values
10101010. . . in the odd frames and contains signaling information for all the channels in the even frames.

In the other variation, channel-associated signaling, each channel has its own private signaling subchannel. A
private subchannel is arranged by allocating one of the eight user bits in every sixth frame for signaling
purposes, so five out of six samples are 8 hits wide, and the other one is only 7 bits wide. CCITT also
recommended a PCM carrier at 2.048 Mbps called E1. This carrier has 32 8-bit data samples packed into the
basic 125-usec frame. Thirty of the channels are used for information and two are used for signaling. Each group
of four frames provides 64 signaling bits, half of which are used for channel-associated signaling and half of
which are used for frame synchronization or are reserved for each country to use as it wishes. Outside North
America and Japan, the 2.048-Mbps E1 carrier is used instead of T1.

Once the voice signal has been digitized, it is tempting to try to use statistical techniques to reduce the number
of bits needed per channel. These techniques are appropriate not only for encoding speech, but for the
digitization of any analog signal. All of the compaction methods are based on the principle that the signal
changes relatively slowly compared to the sampling frequency, so that much of the information in the 7- or 8-bit
digital level is redundant.

One method, called differential pulse code modulation, consists of outputting not the digitized amplitude, but the
difference between the current value and the previous one. Since jumps of £16 or more on a scale of 128 are
unlikely, 5 bits should suffice instead of 7. If the signal does occasionally jump wildly, the encoding logic may
require several sampling periods to "catch up." For speech, the error introduced can be ignored.

A variation of this compaction method requires each sampled value to differ from its predecessor by either +1 or
-1. Under these conditions, a single bit can be transmitted, telling whether the new sample is above or below the
previous one. This technique, called delta modulation, is illustrated in Fig. 2-34. Like all compaction techniques
that assume small level changes between consecutive samples, delta encoding can get into trouble if the signal
changes too fast, as shown in the figure. When this happens, information is lost.

Figure 2-34. Delta modulation.
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An improvement to differential PCM is to extrapolate the previous few values to predict the next value and then
to encode the difference between the actual signal and the predicted one. The transmitter and receiver must use
the same prediction algorithm, of course. Such schemes are called predictive encoding. They are useful
because they reduce the size of the numbers to be encoded, hence the number of bits to be sent.

Time division multiplexing allows multiple T1 carriers to be multiplexed into higher-order carriers. Figure 2-35
shows how this can be done. At the left we see four T1 channels being multiplexed onto one T2 channel. The
multiplexing at T2 and above is done bit for bit, rather than byte for byte with the 24 voice channels that make up
a T1 frame. Four T1 streams at 1.544 Mbps should generate 6.176 Mbps, but T2 is actually 6.312 Mbps. The
extra bits are used for framing and recovery in case the carrier slips. T1 and T3 are widely used by customers,
whereas T2 and T4 are only used within the telephone system itself, so they are not well known.

Figure 2-35. Multiplexing T1 streams onto higher carriers.
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At the next level, seven T2 streams are combined bitwise to form a T3 stream. Then six T3 streams are joined to
form a T4 stream. At each step a small amount of overhead is added for framing and recovery in case the
synchronization between sender and receiver is lost.

Just as there is little agreement on the basic carrier between the United States and the rest of the world, there is
equally little agreement on how it is to be multiplexed into higher-bandwidth carriers. The U.S. scheme of
stepping up by 4, 7, and 6 did not strike everyone else as the way to go, so the CCITT standard calls for
multiplexing four streams onto one stream at each level. Also, the framing and recovery data are different
between the U.S. and CCITT standards. The CCITT hierarchy for 32, 128, 512, 2048, and 8192 channels runs at
speeds of 2.048, 8.848, 34.304, 139.264, and 565.148 Mbps.

SONET/SDH

In the early days of fiber optics, every telephone company had its own proprietary optical TDM system. After
AT&T was broken up in 1984, local telephone companies had to connect to multiple long-distance carriers, all
with different optical TDM systems, so the need for standardization became obvious. In 1985, Bellcore, the
RBOCs research arm, began working on a standard, called SONET (Synchronous Optical NETwork). Later,



CCITT joined the effort, which resulted in a SONET standard and a set of parallel CCITT recommendations
(G.707, G.708, and G.709) in 1989. The CCITT recommendations are called SDH (Synchronous Digital
Hierarchy) but differ from SONET only in minor ways. Virtually all the long-distance telephone traffic in the United
States, and much of it elsewhere, now uses trunks running SONET in the physical layer. For additional
information about SONET, see (Bellamy, 2000; Goralski, 2000; and Shepard, 2001).

The SONET design had four major goals. First and foremost, SONET had to make it possible for different
carriers to interwork. Achieving this goal required defining a common signaling standard with respect to
wavelength, timing, framing structure, and other issues.

Second, some means was needed to unify the U.S., European, and Japanese digital systems, all of which were
based on 64-kbps PCM channels, but all of which combined them in different (and incompatible) ways.

Third, SONET had to provide a way to multiplex multiple digital channels. At the time SONET was devised, the
highest-speed digital carrier actually used widely in the United States was T3, at 44.736 Mbps. T4 was defined,
but not used much, and nothing was even defined above T4 speed. Part of SONET's mission was to continue
the hierarchy to gigabits/sec and beyond. A standard way to multiplex slower channels into one SONET channel
was also needed.

Fourth, SONET had to provide support for operations, administration, and maintenance (OAM). Previous
systems did not do this very well.

An early decision was to make SONET a traditional TDM system, with the entire bandwidth of the fiber devoted
to one channel containing time slots for the various subchannels. As such, SONET is a synchronous system. It is
controlled by a master clock with an accuracy of about 1 part in 10°. Bits on a SONET line are sent out at
extremely precise intervals, controlled by the master clock. When cell switching was later proposed to be the
basis of ATM, the fact that it permitted irregular cell arrivals got it labeled as Asynchronous Transfer Mode to
contrast it to the synchronous operation of SONET. With SONET, the sender and receiver are tied to a common
clock; with ATM they are not.

The basic SONET frame is a block of 810 bytes put out every 125 psec. Since SONET is synchronous, frames
are emitted whether or not there are any useful data to send. Having 8000 frames/sec exactly matches the
sampling rate of the PCM channels used in all digital telephony systems.

The 810-byte SONET frames are best described as a rectangle of bytes, 90 columns wide by 9 rows high. Thus,
8 x 810 = 6480 bits are transmitted 8000 times per second, for a gross data rate of 51.84 Mbps. This is the basic
SONET channel, called STS-1 (Synchronous Transport Signal-1). All SONET trunks are a multiple of STS-1.

The first three columns of each frame are reserved for system management information, as illustrated in Fig. 2-
36. The first three rows contain the section overhead; the next six contain the line overhead. The section
overhead is generated and checked at the start and end of each section, whereas the line overhead is
generated and checked at the start and end of each line.

Figure 2-36. Two back-to-back SONET frames.
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A SONET transmitter sends back-to-back 810-byte frames, without gaps between them, even when there are no
data (in which case it sends dummy data). From the receiver's point of view, all it sees is a continuous bit
stream, so how does it know where each frame begins? The answer is that the first two bytes of each frame
contain a fixed pattern that the receiver searches for. If it finds this pattern in the same place in a large number
of consecutive frames, it assumes that it is in sync with the sender. In theory, a user could insert this pattern into
the payload in a regular way, but in practice it cannot be done due to the multiplexing of multiple users into the
same frame and other reasons.

The remaining 87 columns hold 87 x 9 x 8 x 8000 = 50.112 Mbps of user data. However, the user data, called
the SPE (Synchronous Payload Envelope), do not always begin in row 1, column 4. The SPE can begin
anywhere within the frame. A pointer to the first byte is contained in the first row of the line overhead. The first
column of the SPE is the path overhead (i.e., header for the end-to-end path sublayer protocol).

The ability to allow the SPE to begin anywhere within the SONET frame and even to span two frames, as shown
in Fig. 2-36, gives added flexibility to the system. For example, if a payload arrives at the source while a dummy
SONET frame is being constructed, it can be inserted into the current frame instead of being held until the start
of the next one.

The SONET multiplexing hierarchy is shown in Fig. 2-37. Rates from STS-1 to STS-192 have been defined. The
optical carrier corresponding to STS-n is called OC-n but is bit for bit the same except for a certain bit reordering
needed for synchronization. The SDH names are different, and they start at OC-3 because CCITT-based
systems do not have a rate near 51.84 Mbps. The OC-9 carrier is present because it closely matches the speed
of a major high-speed trunk used in Japan. OC-18 and OC-36 are used in Japan. The gross data rate includes
all the overhead. The SPE data rate excludes the line and section overhead. The user data rate excludes all
overhead and counts only the 86 payload columns.

Figure 2-37. SONET and SDH multiplex rates.

SONET SDH Data rate (Mbps)
Electrical Optical _ Optical _ Gross _ SPE . User
5TS1 | 0C1 | 51.84 50112 49536
STS-3 OC-3 STM-1 155.52 150.336 148,608
5TS9 oC-9 STM-3 466.56 451.008 445,824
STS-12 | OC-12 | STM<4  622.08 601344  594.432
§TS-16  OC-18  STM-6 93312 902016  891.648
STS-24  OC-24 | STM-8 | 1244.16 | 1202688 1188.864
STS-38 OC-38 STM-12 | 1866.24 | 1804032 1783298
STS-48 | OC-48 | STM-16  2488.32 2405376 2377.728
5TS-192 OC-192  STM-B4  9953.28 | 9621.504 9510912



As an aside, when a carrier, such as OC-3, is not multiplexed, but carries the data from only a single source, the
letter c (for concatenated) is appended to the designation, so OC-3 indicates a 155.52-Mbps carrier consisting of
three separate OC-1 carriers, but OC-3c indicates a data stream from a single source at 155.52 Mbps. The three
OC-1 streams within an OC-3c stream are interleaved by column, first column 1 from stream 1, then column 1
from stream 2, then column 1 from stream 3, followed by column 2 from stream 1, and so on, leading to a frame
270 columns wide and 9 rows deep.

2.5.5 Switching

From the point of view of the average telephone engineer, the phone system is divided into two principal parts:
outside plant (the local loops and trunks, since they are physically outside the switching offices) and inside plant
(the switches), which are inside the switching offices. We have just looked at the outside plant. Now it is time to
examine the inside plant.

Two different switching techniques are used nowadays: circuit switching and packet switching. We will give a
brief introduction to each of them below. Then we will go into circuit switching in detail because that is how the
telephone system works. We will study packet switching in detail in subsequent chapters.

Circuit Switching

When you or your computer places a telephone call, the switching equipment within the telephone system seeks
out a physical path all the way from your telephone to the receiver's telephone. This technique is called circuit
switching and is shown schematically in Fig. 2-38(a). Each of the six rectangles represents a carrier switching
office (end office, toll office, etc.). In this example, each office has three incoming lines and three outgoing lines.
When a call passes through a switching office, a physical connection is (conceptually) established between the
line on which the call came in and one of the output lines, as shown by the dotted lines.

Figure 2-38. (a) Circuit switching. (b) Packet switching.

Physical (coppear)

- —_ g—_g Ot conneclion set up
L o ol when call is made
= —O —0-————-0 ﬁL
.Q]—ékh O——f_ / LG S o
T0 . O -0 N OTG=p
T N‘D—j / J'—~—D - G——":_*|
—T - O ) )
_C — ——
— [ ot — —
(@) AN
Switching office
!
’
Camputer Packets queued
lor subsequent
= HHF—T—————1 Iransmuss;unn
T / o0 oo O
[CH—
T o I—\ hoot »@
—{H I:H:I—
I Cornpuler

(b

In the early days of the telephone, the connection was made by the operator plugging a jumper cable into the
input and output sockets. In fact, a surprising little story is associated with the invention of automatic circuit
switching equipment. It was invented by a 19th century Missouri undertaker named Almon B. Strowger. Shortly
after the telephone was invented, when someone died, one of the survivors would call the town operator and say
"Please connect me to an undertaker." Unfortunately for Mr. Strowger, there were two undertakers in his town,



and the other one's wife was the town telephone operator. He quickly saw that either he was going to have to
invent automatic telephone switching equipment or he was going to go out of business. He chose the first option.
For nearly 100 years, the circuit-switching equipment used worldwide was known as Strowger gear. (History
does not record whether the now-unemployed switchboard operator got a job as an information operator,
answering questions such as "What is the phone number of an undertaker?")

The model shown in Fig. 2-39(a) is highly simplified, of course, because parts of the physical path between the
two telephones may, in fact, be microwave or fiber links onto which thousands of calls are multiplexed.
Nevertheless, the basic idea is valid: once a call has been set up, a dedicated path between both ends exists
and will continue to exist until the call is finished.

Figure 2-39. Timing of events in (a) circuit switching, (b) message switching, (c) packet switching.
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The alternative to circuit switching is packet switching, shown in Fig. 2-38(b). With this technology, individual
packets are sent as need be, with no dedicated path being set up in advance. It is up to each packet to find its
way to the destination on its own.

An important property of circuit switching is the need to set up an end-to-end path before any data can be sent.
The elapsed time between the end of dialing and the start of ringing can easily be 10 sec, more on long-distance
or international calls. During this time interval, the telephone system is hunting for a path, as shown in Fig. 2-
39(a). Note that before data transmission can even begin, the call request signal must propagate all the way to
the destination and be acknowledged. For many computer applications (e.g., point-of-sale credit verification),
long setup times are undesirable.

As a consequence of the reserved path between the calling parties, once the setup has been completed, the
only delay for data is the propagation time for the electromagnetic signal, about 5 msec per 1000 km. Also as a
consequence of the established path, there is no danger of congestion—that is, once the call has been put
through, you never get busy signals. Of course, you might get one before the connection has been established
due to lack of switching or trunk capacity.



Message Switching

An alternative switching strategy is message switching, illustrated in Fig. 2-39(b). When this form of switching is
used, no physical path is established in advance between sender and receiver. Instead, when the sender has a
block of data to be sent, it is stored in the first switching office (i.e., router) and then forwarded later, one hop at a
time. Each block is received in its entirety, inspected for errors, and then retransmitted. A network using this
technique is called a store-and-forward network, as mentioned in Chap. 1.

The first electromechanical telecommunication systems used message switching, namely, for telegrams. The
message was punched on paper tape (off-line) at the sending office, and then read in and transmitted over a
communication line to the next office along the way, where it was punched out on paper tape. An operator there
tore the tape off and read it in on one of the many tape readers, one reader per outgoing trunk. Such a switching
office was called a torn tape office. Paper tape is long gone and message switching is not used any more, so we
will not discuss it further in this book.

Packet Switching

With message switching, there is no limit at all on block size, which means that routers (in a modern system)
must have disks to buffer long blocks. It also means that a single block can tie up a router-router line for minutes,
rendering message switching useless for interactive traffic. To get around these problems, packet switching was
invented, as described in Chap. 1. Packet-switching networks place a tight upper limit on block size, allowing
packets to be buffered in router main memory instead of on disk. By making sure that no user can monopolize
any transmission line very long (milliseconds), packet-switching networks are well suited for handling interactive
traffic. A further advantage of packet switching over message switching is shown in Fig. 2-39(b) and (c): the first
packet of a multipacket message can be forwarded before the second one has fully arrived, reducing delay and
improving throughput. For these reasons, computer networks are usually packet switched, occasionally circuit
switched, but never message switched.

Circuit switching and packet switching differ in many respects. To start with, circuit switching requires that a
circuit be set up end to end before communication begins. Packet switching does not require any advance setup.
The first packet can just be sent as soon as it is available.

The result of the connection setup with circuit switching is the reservation of bandwidth all the way from the
sender to the receiver. All packets follow this path. Among other properties, having all packets follow the same
path means that they cannot arrive out of order. With packet switching there is no path, so different packets can
follow different paths, depending on network conditions at the time they are sent. They may arrive out of order.

Packet switching is more fault tolerant than circuit switching. In fact, that is why it was invented. If a switch goes
down, all of the circuits using it are terminated and no more traffic can be sent on any of them. With packet
switching, packets can be routed around dead switches.

Setting up a path in advance also opens up the possibility of reserving bandwidth in advance. If bandwidth is
reserved, then when a packet arrives, it can be sent out immediately over the reserved bandwidth. With packet
switching, no bandwidth is reserved, so packets may have to wait their turn to be forwarded.

Having bandwidth reserved in advance means that no congestion can occur when a packet shows up (unless
more packets show up than expected). On the other hand, when an attempt is made to establish a circuit, the
attempt can fail due to congestion. Thus, congestion can occur at different times with circuit switching (at setup
time) and packet switching (when packets are sent).

If a circuit has been reserved for a particular user and there is no traffic to send, the bandwidth of that circuit is
wasted. It cannot be used for other traffic. Packet switching does not waste bandwidth and thus is more efficient
from a system-wide perspective. Understanding this trade-off is crucial for comprehending the difference
between circuit switching and packet switching. The trade-off is between guaranteed service and wasting
resources versus not guaranteeing service and not wasting resources.



Packet switching uses store-and-forward transmission. A packet is accumulated in a router's memory, then sent
on to the next router. With circuit switching, the bits just flow through the wire continuously. The store-and-
forward technique adds delay.

Another difference is that circuit switching is completely transparent. The sender and receiver can use any bit
rate, format, or framing method they want to. The carrier does not know or care. With packet switching, the
carrier determines the basic parameters. A rough analogy is a road versus a railroad. In the former, the user
determines the size, speed, and nature of the vehicle; in the latter, the carrier does. It is this transparency that
allows voice, data, and fax to coexist within the phone system.

A final difference between circuit and packet switching is the charging algorithm. With circuit switching, charging
has historically been based on distance and time. For mobile phones, distance usually does not play a role,
except for international calls, and time plays only a minor role (e.g., a calling plan with 2000 free minutes costs
more than one with 1000 free minutes and sometimes night or weekend calls are cheaper than normal). With
packet switching, connect time is not an issue, but the volume of traffic sometimes is. For home users, ISPs
usually charge a flat monthly rate because it is less work for them and their customers can understand this
model easily, but backbone carriers charge regional networks based on the volume of their traffic. The
differences are summarized in Fig. 2-40.

Figure 2-40. A comparison of circuit-switched and packet-switched networks.

Item Circuit switched  Packet switched
Call setup - Required - Net needed
Dedicated physical path Yes Mo
Each packet follows the same route Yes Mo
Packets arrive in order | Yes - No
Is a switch crash fatal  Yes  No
Bandwidth available | Fixed | Dynamic
Time of possible congestion At setup time On every packet
Potentially wasted bandwidth Yes Mo
Store-and-forward transmission  No | Yes
Transparency Yes Mo
Charging Per minute Per packet

Both circuit switching and packet switching are important enough that we will come back to them shortly and
describe the various technologies used in detail.

2.6 The Mobile Telephone System

The traditional telephone system (even if it some day gets multigigabit end-to-end fiber) will still not be able to
satisfy a growing group of users: people on the go. People now expect to make phone calls from airplanes, cars,
swimming pools, and while jogging in the park. Within a few years they will also expect to send e-mail and surf
the Web from all these locations and more. Consequently, there is a tremendous amount of interest in wireless
telephony. In the following sections we will study this topic in some detail.

Wireless telephones come in two basic varieties: cordless phones and mobile phones (sometimes called cell
phones). Cordless phones are devices consisting of a base station and a handset sold as a set for use within the
home. These are never used for networking, so we will not examine them further. Instead we will concentrate on
the mobile system, which is used for wide area voice and data communication.

Mobile phones have gone through three distinct generations, with different technologies:

1. Analog voice.
2. Digital voice.



3. Digital voice and data (Internet, e-mail, etc.).

Although most of our discussion will be about the technology of these systems, it is interesting to note how
political and tiny marketing decisions can have a huge impact. The first mobile system was devised in the U.S.
by AT&T and mandated for the whole country by the FCC. As a result, the entire U.S. had a single (analog)
system and a mobile phone purchased in California also worked in New York. In contrast, when mobile came to
Europe, every country devised its own system, which resulted in a fiasco.

Europe learned from its mistake and when digital came around, the government-run PTTs got together and
standardized on a single system (GSM), so any European mobile phone will work anywhere in Europe. By then,
the U.S. had decided that government should not be in the standardization business, so it left digital to the
marketplace. This decision resulted in different equipment manufacturers producing different kinds of mobile
phones. As a consequence, the U.S. now has two major incompatible digital mobile phone systems in operation
(plus one minor one).

Despite an initial lead by the U.S., mobile phone ownership and usage in Europe is now far greater than in the
U.S. Having a single system for all of Europe is part of the reason, but there is more. A second area where the
U.S. and Europe differed is in the humble matter of phone numbers. In the U.S. mobile phones are mixed in with
regular (fixed) telephones. Thus, there is no way for a caller to see if, say, (212) 234-5678 is a fixed telephone
(cheap or free call) or a mobile phone (expensive call). To keep people from getting nervous about using the
telephone, the telephone companies decided to make the mobile phone owner pay for incoming calls. As a
consequence, many people hesitated to buy a mobile phone for fear of running up a big bill by just receiving
calls. In Europe, mobile phones have a special area code (analogous to 800 and 900 numbers) so they are
instantly recognizable. Consequently, the usual rule of "caller pays" also applies to mobile phones in Europe
(except for international calls where costs are split).

A third issue that has had a large impact on adoption is the widespread use of prepaid mobile phones in Europe
(up to 75% in some areas). These can be purchased in many stores with no more formality than buying a radio.
You pay and you go. They are preloaded with, for example, 20 or 50 euro and can be recharged (using a secret
PIN code) when the balance drops to zero. As a consequence, practically every teenager and many small
children in Europe have (usually prepaid) mobile phones so their parents can locate them, without the danger of
the child running up a huge bill. If the mobile phone is used only occasionally, its use is essentially free since
there is no monthly charge or charge for incoming calls.

2.6.1 First-Generation Mobile Phones: Analog Voice

Enough about the politics and marketing aspects of mobile phones. Now let us look at the technology, starting
with the earliest system. Mobile radiotelephones were used sporadically for maritime and military communication
during the early decades of the 20th century. In 1946, the first system for car-based telephones was set up in St.
Louis. This system used a single large transmitter on top of a tall building and had a single channel, used for
both sending and receiving. To talk, the user had to push a button that enabled the transmitter and disabled the
receiver. Such systems, known as push-to-talk systems, were installed in several cities beginning in the late
1950s. CB-radio, taxis, and police cars on television programs often use this technology.

In the 1960s, IMTS (Improved Mobile Telephone System) was installed. It, too, used a high-powered (200-watt)
transmitter, on top of a hill, but now had two frequencies, one for sending and one for receiving, so the push-to-
talk button was no longer needed. Since all communication from the mobile telephones went inbound on a
different channel than the outbound signals, the mobile users could not hear each other (unlike the push-to-talk
system used in taxis).

IMTS supported 23 channels spread out from 150 MHz to 450 MHz. Due to the small number of channels, users
often had to wait a long time before getting a dial tone. Also, due to the large power of the hilltop transmitter,
adjacent systems had to be several hundred kilometers apart to avoid interference. All in all, the limited capacity
made the system impractical.

Advanced Mobile Phone System



All that changed with AMPS (Advanced Mobile Phone System), invented by Bell Labs and first installed in the
United States in 1982. It was also used in England, where it was called TACS, and in Japan, where it was called
MCS-L1. Although no longer state of the art, we will look at it in some detail because many of its fundamental
properties have been directly inherited by its digital successor, D-AMPS, in order to achieve backward
compatibility.

In all mobile phone systems, a geographic region is divided up into cells, which is why the devices are
sometimes called cell phones. In AMPS, the cells are typically 10 to 20 km across; in digital systems, the cells
are smaller. Each cell uses some set of frequencies not used by any of its neighbors. The key idea that gives
cellular systems far more capacity than previous systems is the use of relatively small cells and the reuse of
transmission frequencies in nearby (but not adjacent) cells. Whereas an IMTS system 100 km across can have
one call on each frequency, an AMPS system might have 100 10-km cells in the same area and be able to have
10 to 15 calls on each frequency, in widely separated cells. Thus, the cellular design increases the system
capacity by at least an order of magnitude, more as the cells get smaller. Furthermore, smaller cells mean that
less power is needed, which leads to smaller and cheaper transmitters and handsets. Hand-held telephones put
out 0.6 watts; transmitters in cars are 3 watts, the maximum allowed by the FCC.

The idea of frequency reuse is illustrated in Fig. 2-41(a). The cells are normally roughly circular, but they are
easier to model as hexagons. In Fig. 2-41(a), the cells are all the same size. They are grouped in units of seven
cells. Each letter indicates a group of frequencies. Notice that for each frequency set, there is a buffer about two
cells wide where that frequency is not reused, providing for good separation and low interference.

Figure 2-41. (a) Frequencies are not reused in adjacent cells. (b) To add more users, smaller cells can be
used.

Finding locations high in the air to place base station antennas is a major issue. This problem has led some
telecommunication carriers to forge alliances with the Roman Catholic Church, since the latter owns a
substantial number of exalted potential antenna sites worldwide, all conveniently under a single management.

In an area where the number of users has grown to the point that the system is overloaded, the power is
reduced, and the overloaded cells are split into smaller microcells to permit more frequency reuse, as shown in
Fig. 2-41(b). Telephone companies sometimes create temporary microcells, using portable towers with satellite
links at sporting events, rock concerts, and other places where large numbers of mobile users congregate for a
few hours. How big the cells should be is a complex matter, which is treated in (Hac, 1995).

At the center of each cell is a base station to which all the telephones in the cell transmit. The base station
consists of a computer and transmitter/receiver connected to an antenna. In a small system, all the base stations
are connected to a single device called an MTSO (Mobile Telephone Switching Office) or MSC (Mobile
Switching Center). In a larger one, several MTSOs may be needed, all of which are connected to a second-level
MTSO, and so on. The MTSOs are essentially end offices as in the telephone system, and are, in fact,
connected to at least one telephone system end office. The MTSOs communicate with the base stations, each
other, and the PSTN using a packet-switching network.



At any instant, each mobile telephone is logically in one specific cell and under the control of that cell's base
station. When a mobile telephone physically leaves a cell, its base station notices the telephone's signal fading
away and asks all the surrounding base stations how much power they are getting from it. The base station then
transfers ownership to the cell getting the strongest signal, that is, the cell where the telephone is now located.
The telephone is then informed of its new boss, and if a call is in progress, it will be asked to switch to a new
channel (because the old one is not reused in any of the adjacent cells). This process, called handoff, takes
about 300 msec. Channel assignment is done by the MTSO, the nerve center of the system. The base stations
are really just radio relays.

Handoffs can be done in two ways. In a soft handoff, the telephone is acquired by the new base station before
the previous one signs off. In this way there is no loss of continuity. The downside here is that the telephone
needs to be able to tune to two frequencies at the same time (the old one and the new one). Neither first nor
second generation devices can do this.

In a hard handoff, the old base station drops the telephone before the new one acquires it. If the new one is
unable to acquire it (e.g., because there is no available frequency), the call is disconnected abruptly. Users tend
to notice this, but it is inevitable occasionally with the current design.

Channels

The AMPS system uses 832 full-duplex channels, each consisting of a pair of simplex channels. There are 832
simplex transmission channels from 824 to 849 MHz and 832 simplex receive channels from 869 to 894 MHz.
Each of these simplex channels is 30 kHz wide. Thus, AMPS uses FDM to separate the channels.

In the 800-MHz band, radio waves are about 40 cm long and travel in straight lines. They are absorbed by trees
and plants and bounce off the ground and buildings. It is possible that a signal sent by a mobile telephone will
reach the base station by the direct path, but also slightly later after bouncing off the ground or a building. This
may lead to an echo or signal distortion (multipath fading). Sometimes, it is even possible to hear a distant
conversation that has bounced several times.

The 832 channels are divided into four categories:

Control (base to mobile) to manage the system.

Paging (base to mobile) to alert mobile users to calls for them.
Access (bidirectional) for call setup and channel assignment.
Data (bidirectional) for voice, fax, or data.

PR

Twenty-one of the channels are reserved for control, and these are wired into a PROM in each telephone. Since
the same frequencies cannot be reused in nearby cells, the actual number of voice channels available per cell is
much smaller than 832, typically about 45.

Call Management

Each mobile telephone in AMPS has a 32-bit serial number and a 10-digit telephone number in its PROM. The
telephone number is represented as a 3-digit area code in 10 bits, and a 7-digit subscriber number in 24 bits.
When a phone is switched on, it scans a preprogrammed list of 21 control channels to find the most powerful
signal.

The phone then broadcasts its 32-bit serial number and 34-bit telephone number. Like all the control information
in AMPS, this packet is sent in digital form, multiple times, and with an error-correcting code, even though the
voice channels themselves are analog.

When the base station hears the announcement, it tells the MTSO, which records the existence of its new
customer and also informs the customer's home MTSO of his current location. During normal operation, the
mobile telephone reregisters about once every 15 minutes.



To make a call, a mobile user switches on the phone, enters the number to be called on the keypad, and hits the
SEND button. The phone then transmits the number to be called and its own identity on the access channel. If a
collision occurs there, it tries again later. When the base station gets the request, it informs the MTSO. If the
caller is a customer of the MTSO's company (or one of its partners), the MTSO looks for an idle channel for the
call. If one is found, the channel number is sent back on the control channel. The mobile phone then
automatically switches to the selected voice channel and waits until the called party picks up the phone.

Incoming calls work differently. To start with, all idle phones continuously listen to the paging channel to detect
messages directed at them. When a call is placed to a mobile phone (either from a fixed phone or another
mobile phone), a packet is sent to the callee's home MTSO to find out where it is. A packet is then sent to the
base station in its current cell, which then sends a broadcast on the paging channel of the form "Unit 14, are you
there?" The called phone then responds with "Yes" on the access channel. The base then says something like:
"Unit 14, call for you on channel 3." At this point, the called phone switches to channel 3 and starts making
ringing sounds (or playing some melody the owner was given as a birthday present).

2.6.2 Second-Generation Mobile Phones: Digital Voice

The first generation of mobile phones was analog; the second generation was digital. Just as there was no
worldwide standardization during the first generation, there was also no standardization during the second,
either. Four systems are in use now: D-AMPS, GSM, CDMA, and PDC. Below we will discuss the first three.
PDC is used only in Japan and is basically D-AMPS maodified for backward compatibility with the first-generation
Japanese analog system. The name PCS (Personal Communications Services) is sometimes used in the
marketing literature to indicate a second-generation (i.e., digital) system. Originally it meant a mobile phone
using the 1900 MHz band, but that distinction is rarely made now.

D-AMPS—The Digital Advanced Mobile Phone System

The second generation of the AMPS systems is D-AMPS and is fully digital. It is described in International
Standard 1S-54 and its successor 1S-136. D-AMPS was carefully designed to co-exist with AMPS so that both
first- and second-generation mobile phones could operate simultaneously in the same cell. In particular, D-
AMPS uses the same 30 kHz channels as AMPS and at the same frequencies so that one channel can be
analog and the adjacent ones can be digital. Depending on the mix of phones in a cell, the cell's MTSO
determines which channels are analog and which are digital, and it can change channel types dynamically as
the mix of phones in a cell changes.

When D-AMPS was introduced as a service, a new frequency band was made available to handle the expected
increased load. The upstream channels were in the 1850-1910 MHz range, and the corresponding downstream
channels were in the 1930-1990 MHz range, again in pairs, as in AMPS. In this band, the waves are 16 cm
long, so a standard Ys-wave antenna is only 4 cm long, leading to smaller phones. However, many D-AMPS
phones can use both the 850-MHz and 1900-MHz bands to get a wider range of available channels.

On a D-AMPS mobile phone, the voice signal picked up by the microphone is digitized and compressed using a
model that is more sophisticated than the delta modulation and predictive encoding schemes we studied earlier.
Compression takes into account detailed properties of the human vocal system to get the bandwidth from the
standard 56-kbps PCM encoding to 8 kbps or less. The compression is done by a circuit called a vocoder
(Bellamy, 2000). The compression is done in the telephone, rather than in the base station or end office, to
reduce the number of bits sent over the air link. With fixed telephony, there is no benefit to having compression
done in the telephone, since reducing the traffic over the local loop does not increase system capacity at all.

With mobile telephony there is a huge gain from doing digitization and compression in the handset, so much so
that in D-AMPS, three users can share a single frequency pair using time division multiplexing. Each frequency
pair supports 25 frames/sec of 40 msec each. Each frame is divided into six time slots of 6.67 msec each, as
illustrated in Fig. 2-42(a) for the lowest frequency pair.

Figure 2-42. (a) A D-AMPS channel with three users. (b) A D-AMPS channel with six users.
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Each frame holds three users who take turns using the upstream and downstream links. During slot 1 of Fig. 2-
42(a), for example, user 1 may transmit to the base station and user 3 is receiving from the base station. Each
slot is 324 bits long, of which 64 bits are used for guard times, synchronization, and control purposes, leaving
260 bits for the user payload. Of the payload bits, 101 are used for error correction over the noisy air link, so
ultimately only 159 bits are left for compressed speech. With 50 slots/sec, the bandwidth available for
compressed speech is just under 8 kbps, 1/7 of the standard PCM bandwidth.

Using better compression algorithms, it is possible to get the speech down to 4 kbps, in which case six users can
be stuffed into a frame, as illustrated in Fig. 2-42(b). From the operator's perspective, being able to squeeze
three to six times as many D-AMPS users into the same spectrum as one AMPS user is a huge win and explains
much of the popularity of PCS. Of course, the quality of speech at 4 kbps is not comparable to what can be
achieved at 56 kbps, but few PCS operators advertise their hi-fi sound quality. It should also be clear that for
data, an 8 kbps channel is not even as good as an ancient 9600-bps modem.

The control structure of D-AMPS is fairly complicated. Briefly summarized, groups of 16 frames form a
superframe, with certain control information present in each superframe a limited number of times. Six main
control channels are used: system configuration, real-time and nonreal-time control, paging, access response,
and short messages. But conceptually, it works like AMPS. When a mobile is switched on, it makes contact with
the base station to announce itself and then listens on a control channel for incoming calls. Having picked up a
new mobile, the MTSO informs the user's home base where he is, so calls can be routed correctly.

One difference between AMPS and D-AMPS is how handoff is handled. In AMPS, the MTSO manages it
completely without help from the mobile devices. As can be seen from Fig. 2-42, in D-AMPS, 1/3 of the time a
mobile is neither sending nor receiving. It uses these idle slots to measure the line quality. When it discovers that
the signal is waning, it complains to the MTSO, which can then break the connection, at which time the mobile
can try to tune to a stronger signal from another base station. As in AMPS, it still takes about 300 msec to do the
handoff. This technique is called MAHO (Mobile Assisted HandOff).

GSM—The Global System for Mobile Communications

D-AMPS is widely used in the U.S. and (in modified form) in Japan. Virtually everywhere else in the world, a
system called GSM (Global System for Mobile communications) is used, and it is even starting to be used in the
U.S. on a limited scale. To a first approximation, GSM is similar to D-AMPS. Both are cellular systems. In both
systems, frequency division multiplexing is used, with each mobile transmitting on one frequency and receiving
on a higher frequency (80 MHz higher for D-AMPS, 55 MHz higher for GSM). Also in both systems, a single
frequency pair is split by time-division multiplexing into time slots shared by multiple mobiles. However, the GSM
channels are much wider than the AMPS channels (200 kHz versus 30 kHz) and hold relatively few additional
users (8 versus 3), giving GSM a much higher data rate per user than D-AMPS.

Below we will briefly discuss some of the main properties of GSM. However, the printed GSM standard is over
5000 [sic] pages long. A large fraction of this material relates to engineering aspects of the system, especially
the design of receivers to handle multipath signal propagation, and synchronizing transmitters and receivers.
None of this will be even mentioned below.



Each frequency band is 200 kHz wide, as shown in Fig. 2-43. A GSM system has 124 pairs of simplex channels.
Each simplex channel is 200 kHz wide and supports eight separate connections on it, using time division
multiplexing. Each currently active station is assigned one time slot on one channel pair. Theoretically, 992
channels can be supported in each cell, but many of them are not available, to avoid frequency conflicts with
neighboring cells. In Fig. 2-43, the eight shaded time slots all belong to the same connection, four of them in
each direction. Transmitting and receiving does not happen in the same time slot because the GSM radios
cannot transmit and receive at the same time and it takes time to switch from one to the other. If the mobile
station assigned to 890.4/935.4 MHz and time slot 2 wanted to transmit to the base station, it would use the
lower four shaded slots (and the ones following them in time), putting some data in each slot until all the data
had been sent.

Figure 2-43. GSM uses 124 frequency channels, each of which uses an eight-slot TDM system.
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The TDM slots shown in Fig. 2-43 are part of a complex framing hierarchy. Each TDM slot has a specific
structure, and groups of TDM slots form multiframes, also with a specific structure. A simplified version of this
hierarchy is shown in Fig. 2-44. Here we can see that each TDM slot consists of a 148-bit data frame that
occupies the channel for 577 psec (including a 30-psec guard time after each slot). Each data frame starts and
ends with three O bits, for frame delineation purposes. It also contains two 57-bit Information fields, each one
having a control bit that indicates whether the following Information field is for voice or data. Between the
Information fields is a 26-bit Sync (training) field that is used by the receiver to synchronize to the sender's frame
boundaries.

Figure 2-44. A portion of the GSM framing structure.
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A data frame is transmitted in 547 usec, but a transmitter is only allowed to send one data frame every 4.615
msec, since it is sharing the channel with seven other stations. The gross rate of each channel is 270,833 bps,
divided among eight users. This gives 33.854 kbps gross, more than double D-AMPS' 324 bits 50 times per
second for 16.2 kbps. However, as with AMPS, the overhead eats up a large fraction of the bandwidth, ultimately
leaving 24.7 kbps worth of payload per user before error correction. After error correction, 13 kbps is left for
speech, giving substantially better voice quality than D-AMPS (at the cost of using correspondingly more
bandwidth).

As can be seen from Fig. 2-44, eight data frames make up a TDM frame and 26 TDM frames make up a 120-
msec multiframe. Of the 26 TDM frames in a multiframe, slot 12 is used for control and slot 25 is reserved for
future use, so only 24 are available for user traffic.

However, in addition to the 26-slot multiframe shown in Fig. 2-44, a 51-slot multiframe (not shown) is also used.
Some of these slots are used to hold several control channels used to manage the system. The broadcast
control channel is a continuous stream of output from the base station containing the base station's identity and
the channel status. All mobile stations monitor their signal strength to see when they have moved into a new cell.

The dedicated control channel is used for location updating, registration, and call setup. In particular, each base
station maintains a database of mobile stations currently under its jurisdiction. Information needed to maintain
this database is sent on the dedicated control channel.

Finally, there is the common control channel, which is split up into three logical subchannels. The first of these
subchannels is the paging channel, which the base station uses to announce incoming calls. Each mobile station
monitors it continuously to watch for calls it should answer. The second is the random access channel, which
allows users to request a slot on the dedicated control channel. If two requests collide, they are garbled and
have to be retried later. Using the dedicated control channel slot, the station can set up a call. The assigned slot
is announced on the third subchannel, the access grant channel.

CDMA—Code Division Multiple Access

D-AMPS and GSM are fairly conventional systems. They use both FDM and TDM to divide the spectrum into
channels and the channels into time slots. However, there is a third kid on the block, CDMA (Code Division
Multiple Access), which works completely differently. When CDMA was first proposed, the industry gave it
approximately the same reaction that Columbus first got from Queen Isabella when he proposed reaching India
by sailing in the wrong direction. However, through the persistence of a single company, Qualcomm, CDMA has
matured to the point where it is not only acceptable, it is now viewed as the best technical solution around and
the basis for the third-generation mobile systems. It is also widely used in the U.S. in second-generation mobile
systems, competing head-on with D-AMPS. For example, Sprint PCS uses CDMA, whereas AT&T Wireless
uses D-AMPS. CDMA is described in International Standard 1S-95 and is sometimes referred to by that name.
The brand name cdmaOne is also used.

CDMA is completely different from AMPS, D-AMPS, and GSM. Instead of dividing the allowed frequency range
into a few hundred narrow channels, CDMA allows each station to transmit over the entire frequency spectrum
all the time. Multiple simultaneous transmissions are separated using coding theory. CDMA also relaxes the
assumption that colliding frames are totally garbled. Instead, it assumes that multiple signals add linearly.

Before getting into the algorithm, let us consider an analogy: an airport lounge with many pairs of people
conversing. TDM is comparable to all the people being in the middle of the room but taking turns speaking. FDM
is comparable to the people being in widely separated clumps, each clump holding its own conversation at the
same time as, but still independent of, the others. CDMA is comparable to everybody being in the middle of the
room talking at once, but with each pair in a different language. The French-speaking couple just hones in on the
French, rejecting everything that is not French as noise. Thus, the key to CDMA is to be able to extract the
desired signal while rejecting everything else as random noise. A somewhat simplified description of CDMA
follows.

In CDMA, each bit time is subdivided into m short intervals called chips. Typically, there are 64 or 128 chips per
bit, but in the example given below we will use 8 chips/bit for simplicity.



Each station is assigned a unique m-bit code called a chip sequence. To transmit a 1 bit, a station sends its chip
sequence. To transmit a 0 bit, it sends the one's complement of its chip sequence. No other patterns are
permitted. Thus, for m = 8, if station A is assigned the chip sequence 00011011, it sends a 1 bit by sending
00011011 and a 0 bit by sending 11100100.

Increasing the amount of information to be sent from b bits/sec to mb chips/sec can only be done if the
bandwidth available is increased by a factor of m, making CDMA a form of spread spectrum communication
(assuming no changes in the modulation or encoding techniques). If we have a 1-MHz band available for 100
stations, with FDM each one would have 10 kHz and could send at 10 kbps (assuming 1 bit per Hz). With
CDMA, each station uses the full 1 MHz, so the chip rate is 1 megachip per second. With fewer than 100 chips
per bit, the effective bandwidth per station is higher for CDMA than FDM, and the channel allocation problem is
also solved.

For pedagogical purposes, it is more convenient to use a bipolar notation, with binary 0 being -1 and binary 1
being +1. We will show chip sequences in parentheses, so a 1 bit for station A now becomes (-1 -1 -1 +1 +1 -1
+1 +1). In Fig. 2-45(a) we show the binary chip sequences assigned to four example stations. In Fig. 2-45(b) we
show them in our bipolar notation.

Figure 2-45. (a) Binary chip sequences for four stations. (b) Bipolar chip sequences. (c) Six examples of
transmissions. (d) Recovery of station C's signal.
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Each station has its own unique chip sequence. Let us use the symbol S to indicate the m-chip vector for station

S, and Sor its negation. All chip sequences are pairwise orthogonal, by which we mean that the normalized
inner product of any two distinct chip sequences, S and T (written as SeT), is 0. It is known how to generate such
orthogonal chip sequences using a method known as Walsh codes. In mathematical terms, orthogonality of the
chip sequences can be expressed as follows:

Equation 2
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In plain English, as many pairs are the same as are different. This orthogonality property will prove crucial later

on. Note that if SeT = 0, then 5*T is also 0. The normalized inner product of any chip sequence with itself is 1:
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This follows because each of the m terms in the inner product is 1, so the sum is m. Also note that Se5=-1

During each bit time, a station can transmit a 1 by sending its chip sequence, it can transmit a 0 by sending the
negative of its chip sequence, or it can be silent and transmit nothing. For the moment, we assume that all
stations are synchronized in time, so all chip sequences begin at the same instant.

When two or more stations transmit simultaneously, their bipolar signals add linearly. For example, if in one chip
period three stations output +1 and one station outputs -1, the result is +2. One can think of this as adding
voltages: three stations outputting +1 volts and 1 station outputting -1 volts gives 2 volts.

In Fig. 2-45(c) we see six examples of one or more stations transmitting at the same time. In the first example, C
transmits a 1 bit, so we just get C's chip sequence. In the second example, both B and C transmit 1 bits, so we
get the sum of their bipolar chip sequences, namely:

(=1 =141 =1+l +1+1 =13 +4=1 +1 =011 +] 1 =1 =1y=(=2 0 O 04242 0-2)

In the third example, station A sends a 1 and station B sends a 0. The others are silent. In the fourth example, A
and C send a 1 bit while B sends a 0 bit. In the fifth example, all four stations send a 1 bit. Finally, in the last
example, A, B, and D send a 1 bit, while C sends a 0 bit. Note that each of the six sequences S ; through S ¢
given in Fig. 2-45(c) represents only one bit time.

To recover the bit stream of an individual station, the receiver must know that station's chip sequence in
advance. It does the recovery by computing the normalized inner product of the received chip sequence (the
linear sum of all the stations that transmitted) and the chip sequence of the station whose bit stream it is trying to
recover. If the received chip sequence is S and the receiver is trying to listen to a station whose chip sequence is
C, it just computes the normalized inner product, SeC.

To see why this works, just imagine that two stations, A and C, both transmit a 1 bit at the same time that B

transmits a O bit. The receiver sees the sum, S=A+B+Cynq computes

SeC=(A+B+C)*C=AsC+BeC+CeC=0+0+1=1

The first two terms vanish because all pairs of chip sequences have been carefully chosen to be orthogonal, as
shown in Eq. (2-4). Now it should be clear why this property must be imposed on the chip sequences.

An alternative way of thinking about this situation is to imagine that the three chip sequences all came in
separately, rather than summed. Then, the receiver would compute the inner product with each one separately
and add the results. Due to the orthogonality property, all the inner products except CeC would be 0. Adding
them and then doing the inner product is in fact the same as doing the inner products and then adding those.



To make the decoding process more concrete, let us consider the six examples of Fig. 2-45(c) again as
illustrated in Fig. 2-45(d). Suppose that the receiver is interested in extracting the bit sent by station C from each
of the six sums S; through Se. It calculates the bit by summing the pairwise products of the received S and the C
vector of Fig. 2-45(b) and then taking 1/8 of the result (since m = 8 here). As shown, the correct bit is decoded
each time. It is just like speaking French.

In an ideal, noiseless CDMA system, the capacity (i.e., number of stations) can be made arbitrarily large, just as
the capacity of a noiseless Nyquist channel can be made arbitrarily large by using more and more bits per
sample. In practice, physical limitations reduce the capacity considerably. First, we have assumed that all the
chips are synchronized in time. In reality, such synchronization is impossible. What can be done is that the
sender and receiver synchronize by having the sender transmit a predefined chip sequence that is long enough
for the receiver to lock onto. All the other (unsynchronized) transmissions are then seen as random noise. If
there are not too many of them, however, the basic decoding algorithm still works fairly well. A large body of
theory exists relating the superposition of chip sequences to noise level (Pickholtz et al., 1982). As one might
expect, the longer the chip sequence, the higher the probability of detecting it correctly in the presence of noise.
For extra reliability, the bit sequence can use an error-correcting code. Chip sequences never use error-
correcting codes.

An implicit assumption in our discussion is that the power levels of all stations are the same as perceived by the
receiver. CDMA is typically used for wireless systems with a fixed base station and many mobile stations at
varying distances from it. The power levels received at the base station depend on how far away the transmitters
are. A good heuristic here is for each mobile station to transmit to the base station at the inverse of the power
level it receives from the base station. In other words, a mobile station receiving a weak signal from the will use
more power than one getting a strong signal. The base station can also give explicit commands to the mobile
stations to increase or decrease their transmission power.

We have also assumed that the receiver knows who the sender is. In principle, given enough computing
capacity, the receiver can listen to all the senders at once by running the decoding algorithm for each of them in
parallel. In real life, suffice it to say that this is easier said than done. CDMA also has many other complicating
factors that have been glossed over in this brief introduction. Nevertheless, CDMA is a clever scheme that is
being rapidly introduced for wireless mobile communication. It normally operates in a band of 1.25 MHz (versus
30 kHz for D-AMPS and 200 kHz for GSM), but it supports many more users in that band than either of the other
systems. In practice, the bandwidth available to each user is at least as good as GSM and often much better.

Engineers who want to gain a very deep understanding of CDMA should read (Lee and Miller, 1998). An
alternative spreading scheme, in which the spreading is over time rather than frequency, is described in (Crespo
et al., 1995). Yet another scheme is described in (Sari et al., 2000). All of these references require quite a bit of
background in communication engineering.

2.6.3 Third-Generation Mobile Phones: Digital Voice and Data

What is the future of mobile telephony? Let us take a quick look. A humber of factors are driving the industry.
First, data traffic already exceeds voice traffic on the fixed network and is growing exponentially, whereas voice
traffic is essentially flat. Many industry experts expect data traffic to dominate voice on mobile devices as well
soon. Second, the telephone, entertainment, and computer industries have all gone digital and are rapidly
converging. Many people are drooling over a lightweight, portable device that acts as a telephone, CD player,
DVD player, e-mail terminal, Web interface, gaming machine, word processor, and more, all with worldwide
wireless connectivity to the Internet at high bandwidth. This device and how to connect it is what third generation
mobile telephony is all about. For more information, see (Huber et al., 2000; and Sarikaya, 2000).

Back in 1992, ITU tried to get a bit more specific about this dream and issued a blueprint for getting there called
IMT-2000, where IMT stood for International Mobile Telecommunications. The number 2000 stood for three
things: (1) the year it was supposed to go into service, (2) the frequency it was supposed to operate at (in MHz),
and (3) the bandwidth the service should have (in kHz).

It did not make it on any of the three counts. Nothing was implemented by 2000. ITU recommended that all
governments reserve spectrum at 2 GHz so devices could roam seamlessly from country to country. China
reserved the required bandwidth but nobody else did. Finally, it was recognized that 2 Mbps is not currently



feasible for users who are too mobile (due to the difficulty of performing handoffs quickly enough). More realistic
is 2 Mbps for stationary indoor users (which will compete head-on with ADSL), 384 kbps for people walking, and
144 kbps for connections in cars. Nevertheless, the whole area of 3G,asitis called, is one great cauldron of
activity. The third generation may be a bit less than originally hoped for and a bit late, but it will surely happen.

The basic services that the IMT-2000 network is supposed to provide to its users are:

High-quality voice transmission.

Messaging (replacing e-mail, fax, SMS, chat, etc.).

Multimedia (playing music, viewing videos, films, television, etc.).
Internet access (Web surfing, including pages with audio and video).

PwnNE

Additional services might be video conferencing, telepresence, group game playing, and m-commerce (waving
your telephone at the cashier to pay in a store). Furthermore, all these services are supposed to be available
worldwide (with automatic connection via a satellite when no terrestrial network can be located), instantly
(always on), and with quality-of-service guarantees.

ITU envisioned a single worldwide technology for IMT-2000, so that manufacturers could build a single device
that could be sold and used anywhere in the world (like CD players and computers and unlike mobile phones
and televisions). Having a single technology would also make life much simpler for network operators and would
encourage more people to use the services. Format wars, such as the Betamax versus VHS battle when
videorecorders first came out, are not good for business.

Several proposals were made, and after some winnowing, it came down to two main ones. The first one, W-
CDMA (Wideband CDMA), was proposed by Ericsson. This system uses direct sequence spread spectrum of
the type we described above. It runs in a 5 MHz bandwidth and has been designed to interwork with GSM
networks although it is not backward compatible with GSM. It does, however, have the property that a caller can
leave a W-CDMA cell and enter a GSM cell without losing the call. This system was pushed hard by the
European Union, which called it UMTS (Universal Mobile Telecommunications System).

The other contender was CDMA2000, proposed by Qualcomm. It, too, is a direct sequence spread spectrum
design, basically an extension of 1S-95 and backward compatible with it. It also uses a 5-MHz bandwidth, but it
has not been designed to interwork with GSM and cannot hand off calls to a GSM cell (or a D-AMPS cell, for that
matter). Other technical differences with W-CDMA include a different chip rate, different frame time, different
spectrum used, and a different way to do time synchronization.

If the Ericsson and Qualcomm engineers were put in a room and told to come to a common design, they
probably could. After all, the basic principle behind both systems is CDMA in a 5 MHz channel and nobody is
willing to die for his preferred chip rate. The trouble is that the real problem is not engineering, but politics (as
usual). Europe wanted a system that interworked with GSM; the U.S. wanted a system that was compatible with
one already widely deployed in the U.S. (IS-95). Each side also supported its local company (Ericsson is based
in Sweden; Qualcomm is in California). Finally, Ericsson and Qualcomm were involved in numerous lawsuits
over their respective CDMA patents.

In March 1999, the two companies settled the lawsuits when Ericsson agreed to buy Qualcomm's infrastructure.
They also agreed to a single 3G standard, but one with multiple incompatible options, which to a large extent just
papers over the technical differences. These disputes notwithstanding, 3G devices and services are likely to
start appearing in the coming years.

Much has been written about 3G systems, most of it praising it as the greatest thing since sliced bread. Some
references are (Collins and Smith, 2001; De Vriendt et al., 2002; Harte et al., 2002; Lu, 2002; and Sarikaya,
2000). However, some dissenters think that the industry is pointed in the wrong direction (Garber, 2002; and
Goodman, 2000).

While waiting for the fighting over 3G to stop, some operators are gingerly taking a cautious small step in the
direction of 3G by going to what is sometimes called 2.5G, although 2.1G might be more accurate. One such
system is EDGE (Enhanced Data rates for GSM Evolution), which is just GSM with more bits per baud. The
trouble is, more bits per baud also means more errors per baud, so EDGE has nine different schemes for



modulation and error correction, differing on how much of the bandwidth is devoted to fixing the errors
introduced by the higher speed.

Another 2.5G scheme is GPRS (General Packet Radio Service), which is an overlay packet network on top of D-
AMPS or GSM. It allows mobile stations to send and receive IP packets in a cell running a voice system. When
GPRS is in operation, some time slots on some frequencies are reserved for packet traffic. The number and
location of the time slots can be dynamically managed by the base station, depending on the ratio of voice to
data traffic in the cell.

The available time slots are divided into several logical channels, used for different purposes. The base station
determines which logical channels are mapped onto which time slots. One logical channel is for downloading
packets from the base station to some mobile station, with each packet indicating who it is destined for. To send
an IP packet, a mobile station requests one or more time slots by sending a request to the base station. If the
request arrives without damage, the base station announces the frequency and time slots allocated to the mobile
for sending the packet. Once the packet has arrived at the base station, it is transferred to the Internet by a wired
connection. Since GPRS is just an overlay over the existing voice system, it is at best a stop-gap measure until
3G arrives.

Even though 3G networks are not fully deployed yet, some researchers regard 3G as a done deal and thus not
interesting any more. These people are already working on 4G systems (Berezdivin et al., 2002; Guo and
Chaskar, 2002; Huang and Zhuang, 2002; Kellerer et al., 2002; and Misra et al., 2002). Some of the proposed
features of 4G systems include high bandwidth, ubiquity (connectivity everywhere), seamless integration with
wired networks and especially IP, adaptive resource and spectrum management, software radios, and high
quality of service for multimedia.

Then on the other hand, so many 802.11 wireless LAN access points are being set up all over the place, that
some people think 3G is not only not a done deal, it is doomed. In this vision, people will just wander from one
802.11 access point to another to stay connected. To say the industry is in a state of enormous flux is a huge
understatement. Check back in about 5 years to see what happens.

2.7 Cable Television

We have now studied both the fixed and wireless telephone systems in a fair amount of detail. Both will clearly
play a major role in future networks. However, an alternative available for fixed networking is now becoming a
major player: cable television networks. Many people already get their telephone and Internet service over the
cable, and the cable operators are actively working to increase their market share. In the following sections we
will look at cable television as a networking system in more detail and contrast it with the telephone systems we
have just studied. For more information about cable, see (Laubach et al., 2001; Louis, 2002; Ovadia, 2001; and
Smith, 2002).

2.7.1 Community Antenna Television

Cable television was conceived in the late 1940s as a way to provide better reception to people living in rural or
mountainous areas. The system initially consisted of a big antenna on top of a hill to pluck the television signal
out of the air, an amplifier, called the head end, to strengthen it, and a coaxial cable to deliver it to people's
houses, as illustrated in Fig. 2-46.

Figure 2-46. An early cable television system.
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In the early years, cable television was called Community Antenna Television. It was very much a mom-and-pop
operation; anyone handy with electronics could set up a service for his town, and the users would chip in to pay
the costs. As the number of subscribers grew, additional cables were spliced onto the original cable and
amplifiers were added as needed. Transmission was one way, from the headend to the users. By 1970,
thousands of independent systems existed.

Tap Coaxial cable

In 1974, Time, Inc., started a new channel, Home Box Office, with new content (movies) and distributed only on
cable. Other cable-only channels followed with news, sports, cooking, and many other topics. This development
gave rise to two changes in the industry. First, large corporations began buying up existing cable systems and
laying new cable to acquire new subscribers. Second, there was now a need to connect multiple systems, often
in distant cities, in order to distribute the new cable channels. The cable companies began to lay cable between
their cities to connect them all into a single system. This pattern was analogous to what happened in the
telephone industry 80 years earlier with the connection of previously isolated end offices to make long distance
calling possible.

2.7.2 Internet over Cable

Over the course of the years the cable system grew and the cables between the various cities were replaced by
high-bandwidth fiber, similar to what was happening in the telephone system. A system with fiber for the long-
haul runs and coaxial cable to the houses is called an HFC (Hybrid Fiber Coax) system. The electro-optical
converters that interface between the optical and electrical parts of the system are called fiber nodes. Because
the bandwidth of fiber is so much more than that of coax, a fiber node can feed multiple coaxial cables. Part of a
modern HFC system is shown in Fig. 2-47(a).

Figure 2-47. (a) Cable television. (b) The fixed telephone system.
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In recent years, many cable operators have decided to get into the Internet access business, and often the
telephony business as well. However, technical differences between the cable plant and telephone plant have an
effect on what has to be done to achieve these goals. For one thing, all the one-way amplifiers in the system
have to be replaced by two-way amplifiers.

However, there is another difference between the HFC system of Fig. 2-47(a) and the telephone system of Fig.
2-47(b) that is much harder to remove. Down in the neighborhoods, a single cable is shared by many houses,
whereas in the telephone system, every house has its own private local loop. When used for television
broadcasting, this sharing does not play a role. All the programs are broadcast on the cable and it does not
matter whether there are 10 viewers or 10,000 viewers. When the same cable is used for Internet access, it
matters a lot if there are 10 users or 10,000. If one user decides to download a very large file, that bandwidth is
potentially being taken away from other users. The more users, the more competition for bandwidth. The
telephone system does not have this particular property: downloading a large file over an ADSL line does not
reduce your neighbor's bandwidth. On the other hand, the bandwidth of coax is much higher than that of twisted
pairs.

The way the cable industry has tackled this problem is to split up long cables and connect each one directly to a
fiber node. The bandwidth from the headend to each fiber node is effectively infinite, so as long as there are not
too many subscribers on each cable segment, the amount of traffic is manageable. Typical cables nowadays
have 500-2000 houses, but as more and more people subscribe to Internet over cable, the load may become
too much, requiring more splitting and more fiber nodes.



2.7.3 Spectrum Allocation

Throwing off all the TV channels and using the cable infrastructure strictly for Internet access would probably
generate a fair number of irate customers, so cable companies are hesitant to do this. Furthermore, most cities
heavily regulate what is on the cable, so the cable operators would not be allowed to do this even if they really
wanted to. As a consequence, they needed to find a way to have television and Internet coexist on the same
cable.

Cable television channels in North America normally occupy the 54-550 MHz region (except for FM radio from
88 to 108 MHz). These channels are 6 MHz wide, including guard bands. In Europe the low end is usually 65
MHz and the channels are 6-8 MHz wide for the higher resolution required by PAL and SECAM but otherwise
the allocation scheme is similar. The low part of the band is not used. Modern cables can also operate well
above 550 MHz, often to 750 MHz or more. The solution chosen was to introduce upstream channels in the 5—
42 MHz band (slightly higher in Europe) and use the frequencies at the high end for the downstream. The cable
spectrum is illustrated in Fig. 2-48.

Figure 2-48. Frequency allocation in a typical cable TV system used for Internet access.
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Note that since the television signals are all downstream, it is possible to use upstream amplifiers that work only
in the 542 MHz region and downstream amplifiers that work only at 54 MHz and up, as shown in the figure.
Thus, we get an asymmetry in the upstream and downstream bandwidths because more spectrum is available
above television than below it. On the other hand, most of the traffic is likely to be downstream, so cable
operators are not unhappy with this fact of life. As we saw earlier, telephone companies usually offer an
asymmetric DSL service, even though they have no technical reason for doing so.

Long coaxial cables are not any better for transmitting digital signals than are long local loops, so analog
modulation is needed here, too. The usual scheme is to take each 6 MHz or 8 MHz downstream channel and
modulate it with QAM-64 or, if the cable quality is exceptionally good, QAM-256. With a 6 MHz channel and
QAM-64, we get about 36 Mbps. When the overhead is subtracted, the net payload is about 27 Mbps. With
QAM-256, the net payload is about 39 Mbps. The European values are 1/3 larger.

For upstream, even QAM-64 does not work well. There is too much noise from terrestrial microwaves, CB
radios, and other sources, so a more conservative scheme—QPSK—is used. This method (shown in Fig. 2-25)
yields 2 bits per baud instead of the 6 or 8 bits QAM provides on the downstream channels. Consequently, the
asymmetry between upstream bandwidth and downstream bandwidth is much more than suggested by Fig. 2-
48.

In addition to upgrading the amplifiers, the operator has to upgrade the headend, too, from a dumb amplifier to
an intelligent digital computer system with a high-bandwidth fiber interface to an ISP. Often the name gets
upgraded as well, from "headend" to CMTS (Cable Modem Termination System). In the following text, we will
refrain from doing a name upgrade and stick with the traditional "headend."

2.7.4 Cable Modems

Internet access requires a cable modem, a device that has two interfaces on it: one to the computer and one to
the cable network. In the early years of cable Internet, each operator had a proprietary cable modem, which was
installed by a cable company technician. However, it soon became apparent that an open standard would create



a competitive cable modem market and drive down prices, thus encouraging use of the service. Furthermore,
having the customers buy cable modems in stores and install them themselves (as they do with V.9x telephone
modems) would eliminate the dreaded truck rolls.

Consequently, the larger cable operators teamed up with a company called CableLabs to produce a cable
modem standard and to test products for compliance. This standard, called DOCSIS (Data Over Cable Service
Interface Specification) is just starting to replace proprietary modems. The European version is called
EuroDOCSIS. Not all cable operators like the idea of a standard, however, since many of them were making
good money leasing their modems to their captive customers. An open standard with dozens of manufacturers
selling cable modems in stores ends this lucrative practice.

The modem-to-computer interface is straightforward. It is normally 10-Mbps Ethernet (or occasionally USB) at
present. In the future, the entire modem might be a small card plugged into the computer, just as with V.9x
internal modems.

The other end is more complicated. A large part of the standard deals with radio engineering, a subject that is far
beyond the scope of this book. The only part worth mentioning here is that cable modems, like ADSL modems,
are always on. They make a connection when turned on and maintain that connection as long as they are
powered up because cable operators do not charge for connect time.

To better understand how they work, let us see what happens when a cable modem is plugged in and powered
up. The modem scans the downstream channels looking for a special packet periodically put out by the headend
to provide system parameters to modems that have just come on-line. Upon finding this packet, the new modem
announces its presence on one of the upstream channels. The headend responds by assigning the modem to its
upstream and downstream channels. These assignments can be changed later if the headend deems it
necessary to balance the load.

The modem then determines its distance from the headend by sending it a special packet and seeing how long it
takes to get the response. This process is called ranging. It is important for the modem to know its distance to
accommodate the way the upstream channels operate and to get the timing right. They are divided in time in
minislots. Each upstream packet must fit in one or more consecutive minislots. The headend announces the start
of a new round of minislots periodically, but the starting gun is not heard at all modems simultaneously due to
the propagation time down the cable. By knowing how far it is from the headend, each modem can compute how
long ago the first minislot really started. Minislot length is network dependent. A typical payload is 8 bytes.

During initialization, the headend also assigns each modem to a minislot to use for requesting upstream
bandwidth. As a rule, multiple modems will be assigned the same minislot, which leads to contention. When a
computer wants to send a packet, it transfers the packet to the modem, which then requests the necessary
number of minislots for it. If the request is accepted, the headend puts an acknowledgement on the downstream
channel telling the modem which minislots have been reserved for its packet. The packet is then sent, starting in
the minislot allocated to it. Additional packets can be requested using a field in the header.

On the other hand, if there is contention for the request minislot, there will be no acknowledgement and the
modem just waits a random time and tries again. After each successive failure, the randomization time is
doubled. (For readers already somewhat familiar with networking, this algorithm is just slotted ALOHA with
binary exponential backoff. Ethernet cannot be used on cable because stations cannot sense the medium. We
will come back to these issues in Chap. 4.)

The downstream channels are managed differently from the upstream channels. For one thing, there is only one
sender (the headend) so there is no contention and no need for minislots, which is actually just time division
statistical multiplexing. For another, the traffic downstream is usually much larger than upstream, so a fixed
packet size of 204 bytes is used. Part of that is a Reed-Solomon error-correcting code and some other
overhead, leaving a user payload of 184 bytes. These numbers were chosen for compatibility with digital
television using MPEG-2, so the TV and downstream data channels are formatted the same way. Logically, the
connections are as depicted in Fig. 2-49.

Figure 2-49. Typical details of the upstream and downstream channels in North America.
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Getting back to modem initialization, once the modem has completed ranging and gotten its upstream channel,
downstream channel, and minislot assignments, it is free to start sending packets. The first packet it sends is
one to the ISP requesting an IP address, which is dynamically assigned using a protocol called DHCP, which we
will study in Chap. 5. It also requests and gets an accurate time of day from the headend.

The next step involves security. Since cable is a shared medium, anybody who wants to go to the trouble to do
so can read all the traffic going past him. To prevent everyone from snooping on their neighbors (literally), all
traffic is encrypted in both directions. Part of the initialization procedure involves establishing encryption keys. At
first one might think that having two strangers, the headend and the modem, establish a secret key in broad
daylight with thousands of people watching would be impossible. Turns out it is not, but we have to wait until
Chap. 8 to explain how (the short answer: use the Diffie-Hellman algorithm).

Finally, the modem has to log in and provide its unique identifier over the secure channel. At this point the
initialization is complete. The user can now log in to the ISP and get to work.

There is much more to be said about cable modems. Some relevant references are (Adams and Dulchinos,
2001; Donaldson and Jones, 2001; and Dutta-Roy, 2001).

2.7.5 ADSL versus Cable

Which is better, ADSL or cable? That is like asking which operating system is better. Or which language is
better. Or which religion. Which answer you get depends on whom you ask. Let us compare ADSL and cable on
a few points. Both use fiber in the backbone, but they differ on the edge. Cable uses coax; ADSL uses twisted
pair. The theoretical carrying capacity of coax is hundreds of times more than twisted pair. However, the full
capacity of the cable is not available for data users because much of the cable's bandwidth is wasted on useless
stuff such as television programs.

In practice, it is hard to generalize about effective capacity. ADSL providers give specific statements about the
bandwidth (e.g., 1 Mbps downstream, 256 kbps upstream) and generally achieve about 80% of it consistently.
Cable providers do not make any claims because the effective capacity depends on how many people are
currently active on the user's cable segment. Sometimes it may be better than ADSL and sometimes it may be
worse. What can be annoying, though, is the unpredictability. Having great service one minute does not
guarantee great service the next minute since the biggest bandwidth hog in town may have just turned on his
computer.

As an ADSL system acquires more users, their increasing numbers have little effect on existing users, since
each user has a dedicated connection. With cable, as more subscribers sign up for Internet service, performance
for existing users will drop. The only cure is for the cable operator to split busy cables and connect each one to a
fiber node directly. Doing so costs time and money, so their are business pressures to avoid it.

As an aside, we have already studied another system with a shared channel like cable: the mobile telephone
system. Here, too, a group of users, we could call them cellmates, share a fixed amount of bandwidth. Normally,
it is rigidly divided in fixed chunks among the active users by FDM and TDM because voice traffic is fairly
smooth. But for data traffic, this rigid division is very inefficient because data users are frequently idle, in which
case their reserved bandwidth is wasted. Nevertheless, in this respect, cable access is more like the mobile
phone system than it is like the fixed system.



Availability is an issue on which ADSL and cable differ. Everyone has a telephone, but not all users are close
enough to their end office to get ADSL. On the other hand, not everyone has cable, but if you do have cable and
the company provides Internet access, you can get it. Distance to the fiber node or headend is not an issue. It is
also worth noting that since cable started out as a television distribution medium, few businesses have it.

Being a point-to-point medium, ADSL is inherently more secure than cable. Any cable user can easily read all
the packets going down the cable. For this reason, any decent cable provider will encrypt all traffic in both
directions. Nevertheless, having your neighbor get your encrypted messages is still less secure than having him
not get anything at all.

The telephone system is generally more reliable than cable. For example, it has backup power and continues to
work normally even during a power outage. With cable, if the power to any amplifier along the chain fails, all
downstream users are cut off instantly.

Finally, most ADSL providers offer a choice of ISPs. Sometimes they are even required to do so by law. This is
not always the case with cable operators.

The conclusion is that ADSL and cable are much more alike than they are different. They offer comparable
service and, as competition between them heats up, probably comparable prices.

2.8 Summary

The physical layer is the basis of all networks. Nature imposes two fundamental limits on all channels, and these
determine their bandwidth. These limits are the Nyquist limit, which deals with noiseless channels, and the
Shannon limit, which deals with noisy channels.

Transmission media can be guided or unguided. The principal guided media are twisted pair, coaxial cable, and
fiber optics. Unguided media include radio, microwaves, infrared, and lasers through the air. An up-and-coming
transmission system is satellite communication, especially LEO systems.

A key element in most wide area networks is the telephone system. Its main components are the local loops,
trunks, and switches. Local loops are analog, twisted pair circuits, which require modems for transmitting digital
data. ADSL offers speeds up to 50 Mbps by dividing the local loop into many virtual channels and modulating
each one separately. Wireless local loops are another new development to watch, especially LMDS.

Trunks are digital, and can be multiplexed in several ways, including FDM, TDM, and WDM. Both circuit
switching and packet switching are important.

For mobile applications, the fixed telephone system is not suitable. Mobile phones are currently in widespread
use for voice and will soon be in widespread use for data. The first generation was analog, dominated by AMPS.
The second generation was digital, with D-AMPS, GSM, and CDMA the major options. The third generation will
be digital and based on broadband CDMA.

An alternative system for network access is the cable television system, which has gradually evolved from a
community antenna to hybrid fiber coax. Potentially, it offers very high bandwidth, but the actual bandwidth
available in practice depends heavily on the number of other users currently active and what they are doing.

Problems
. . . o =
1. Compute the Fourier coefficients for the function f(t) =t (0 =t —1).
2. Anoiseless 4-kHz channel is sampled every 1 msec. What is the maximum data rate?
3. Television channels are 6 MHz wide. How many bits/sec can be sent if four-level digital signals are

used? Assume a noiseless channel.

4. If a binary signal is sent over a 3-kHz channel whose signal-to-noise ratio is 20 dB, what is the maximum
achievable data rate?

5. What signal-to-noise ratio is needed to put a T1 carrier on a 50-kHz line?
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What is the difference between a passive star and an active repeater in a fiber network?

How much bandwidth is there in 0.1 micron of spectrum at a wavelength of 1 micron?

It is desired to send a sequence of computer screen images over an optical fiber. The screen is 480 x
640 pixels, each pixel being 24 bits. There are 60 screen images per second. How much bandwidth is
needed, and how many microns of wavelength are needed for this band at 1.30 microns?

Is the Nyquist theorem true for optical fiber or only for copper wire?

In Fig. 2-6 the lefthand band is narrower than the others. Why?

Radio antennas often work best when the diameter of the antenna is equal to the wavelength of the
radio wave. Reasonable antennas range from 1 cm to 5 meters in diameter. What frequency range does
this cover?

Multipath fading is maximized when the two beams arrive 180 degrees out of phase. How much of a
path difference is required to maximize the fading for a 50-km-long 1-GHz microwave link?

A laser beam 1 mm wide is aimed at a detector 1 mm wide 100 m away on the roof of a building. How
much of an angular diversion (in degrees) does the laser have to have before it misses the detector?
The 66 low-orbit satellites in the Iridium project are divided into six necklaces around the earth. At the
altitude they are using, the period is 90 minutes. What is the average interval for handoffs for a
stationary transmitter?

Consider a satellite at the altitude of geostationary satellites but whose orbital plane is inclined to the

equatorial plane by an angle q} To a stationary user on the earth's surface at north latitude q} does this
satellite appear motionless in the sky? If not, describe its motion.

How many end office codes were there pre-1984, when each end office was named by its three-digit
area code and the first three digits of the local number? Area codes started with a digit in the range 2-9,
had a 0 or 1 as the second digit, and ended with any digit. The first two digits of a local number were
always in the range 2-9. The third digit could be any digit.

Using only the data given in the text, what is the maximum number of telephones that the existing U.S.
system can support without changing the numbering plan or adding additional equipment? Could this
number of telephones actually be achieved? For purposes of this problem, a computer or fax machine
counts as a telephone. Assume there is only one device per subscriber line.

A simple telephone system consists of two end offices and a single toll office to which each end office is
connected by a 1-MHz full-duplex trunk. The average telephone is used to make four calls per 8-hour
workday. The mean call duration is 6 min. Ten percent of the calls are long-distance (i.e., pass through
the toll office). What is the maximum number of telephones an end office can support? (Assume 4 kHz
per circuit.)

A regional telephone company has 10 million subscribers. Each of their telephones is connected to a
central office by a copper twisted pair. The average length of these twisted pairs is 10 km. How much is
the copper in the local loops worth? Assume that the cross section of each strand is a circle 1 mm in
diameter, the density of copper is 9.0 grams/cms, and that copper sells for 3 dollars per kilogram.

Is an oil pipeline a simplex system, a half-duplex system, a full-duplex system, or none of the above?
The cost of a fast microprocessor has dropped to the point where it is now possible to put one in each
modem. How does that affect the handling of telephone line errors?

A modem constellation diagram similar to Fig. 2-25 has data points at the following coordinates: (1, 1),
(1, -1), (-1, 1), and (-1, -1). How many bps can a modem with these parameters achieve at 1200 baud?
A modem constellation diagram similar to Fig. 2-25 has data points at (0, 1) and (0, 2). Does the modem
use phase modulation or amplitude modulation?

In a constellation diagram, all the points lie on a circle centered on the origin. What kind of modulation is
being used?

How many frequencies does a full-duplex QAM-64 modem use?

An ADSL system using DMT allocates 3/4 of the available data channels to the downstream link. It uses
QAM-64 modulation on each channel. What is the capacity of the downstream link?

In the four-sector LMDS example of Fig. 2-30, each sector has its own 36-Mbps channel. According to
gqueueing theory, if the channel is 50% loaded, the queueing time will be equal to the download time.
Under these conditions, how long does it take to download a 5-KB Web page? How long does it take to
download the page over a 1-Mbps ADSL line? Over a 56-kbps modem?

Ten signals, each requiring 4000 Hz, are multiplexed on to a single channel using FDM. How much
minimum bandwidth is required for the multiplexed channel? Assume that the guard bands are 400 Hz
wide.

Why has the PCM sampling time been set at 125 psec?

What is the percent overhead on a T1 carrier; that is, what percent of the 1.544 Mbps are not delivered
to the end user?

Compare the maximum data rate of a noiseless 4-kHz channel using
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a. (a) Analog encoding (e.g., QPSK) with 2 bits per sample.

b. (b) The T1 PCM system.
If a T1 carrier system slips and loses track of where it is, it tries to resynchronize using the 1st bit in each
frame. How many frames will have to be inspected on average to resynchronize with a probability of
0.001 of being wrong?
What is the difference, if any, between the demodulator part of a modem and the coder part of a codec?
(After all, both convert analog signals to digital ones.)
A signal is transmitted digitally over a 4-kHz noiseless channel with one sample every 125 usec. How
many bits per second are actually sent for each of these encoding methods?

a. (a) CCITT 2.048 Mbps standard.

b. (b) DPCM with a 4-bit relative signal value.

c. (c) Delta modulation.
A pure sine wave of amplitude A is encoded using delta modulation, with x samples/sec. An output of +1
corresponds to a signal change of +A/8, and an output signal of -1 corresponds to a signal change of -
A/8. What is the highest frequency that can be tracked without cumulative error?
SONET clocks have a drift rate of about 1 part in 10°. How long does it take for the drift to equal the
width of 1 bit? What are the implications of this calculation?
In Fig. 2-37, the user data rate for OC-3 is stated to be 148.608 Mbps. Show how this number can be
derived from the SONET OC-3 parameters.
To accommodate lower data rates than STS-1, SONET has a system of virtual tributaries (VT). AVT is a
partial payload that can be inserted into an STS-1 frame and combined with other partial payloads to fill
the data frame. VT1.5 uses 3 columns, VT2 uses 4 columns, VT3 uses 6 columns, and VT6 uses 12
columns of an STS-1 frame. Which VT can accommodate

a. (a) A DS-1 service (1.544 Mbps)?

b. (b) European CEPT-1 service (2.048 Mbps)?

c. (c) ADS-2 service (6.312 Mbps)?
What is the essential difference between message switching and packet switching?
What is the available user bandwidth in an OC-12c connection?
Three packet-switching networks each contain n nodes. The first network has a star topology with a
central switch, the second is a (bidirectional) ring, and the third is fully interconnected, with a wire from
every node to every other node. What are the best-, average-, and-worst case transmission paths in
hops?
Compare the delay in sending an x-bit message over a k-hop path in a circuit-switched network and in a
(lightly loaded) packet-switched network. The circuit setup time is s sec, the propagation delay is d sec
per hop, the packet size is p bits, and the data rate is b bps. Under what conditions does the packet
network have a lower delay?
Suppose that x bits of user data are to be transmitted over a k-hop path in a packet-switched network as

a series of packets, each containing p data bits and h header bits, with x >}p + h. The bit rate of the
lines is b bps and the propagation delay is negligible. What value of p minimizes the total delay?

In a typical mobile phone system with hexagonal cells, it is forbidden to reuse a frequency band in an
adjacent cell. If 840 frequencies are available, how many can be used in a given cell?

The actual layout of cells is seldom as regular that as shown in Fig. 2-41. Even the shapes of individual
cells are typically irregular. Give a possible reason why this might be.

Make a rough estimate of the number of PCS microcells 100 m in diameter it would take to cover San
Francisco (120 square km).

Sometimes when a mobile user crosses the boundary from one cell to another, the current call is
abruptly terminated, even though all transmitters and receivers are functioning perfectly. Why?

D-AMPS has appreciably worse speech quality than GSM. Is this due to the requirement that D-AMPS
be backward compatible with AMPS, whereas GSM had no such constraint? If not, what is the cause?
Calculate the maximum number of users that D-AMPS can support simultaneously within a single cell.
Do the same calculation for GSM. Explain the difference.

Suppose that A, B, and C are simultaneously transmitting O bits, using a CDMA system with the chip
sequences of Fig. 2-45(b). What is the resulting chip sequence?

In the discussion about orthogonality of CDMA chip sequences, it was stated that if SeT = 0 then SeT s
also 0. Prove this.

Consider a different way of looking at the orthogonality property of CDMA chip sequences. Each bit in a
pair of sequences can match or not match. Express the orthogonality property in terms of matches and
mismatches.
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. A CDMA receiver gets the following chips: (-1 +1 -3 +1 -1 -3 +1 +1). Assuming the chip sequences
defined in Fig. 2-45(b), which stations transmitted, and which bits did each one send?

At the low end, the telephone system is star shaped, with all the local loops in a neighborhood
converging on an end office. In contrast, cable television consists of a single long cable snaking its way
past all the houses in the same neighborhood. Suppose that a future TV cable were 10 Gbps fiber
instead of copper. Could it be used to simulate the telephone model of everybody having their own
private line to the end office? If so, how many one-telephone houses could be hooked up to a single
fiber?

A cable TV system has 100 commercial channels, all of them alternating programs with advertising. Is
this more like TDM or like FDM?

A cable company decides to provide Internet access over cable in a neighborhood consisting of 5000
houses. The company uses a coaxial cable and spectrum allocation allowing 100 Mbps downstream
bandwidth per cable. To attract customers, the company decides to guarantee at least 2 Mbps
downstream bandwidth to each house at any time. Describe what the cable company needs to do to
provide this guarantee.

Using the spectral allocation shown in Fig. 2-48 and the information given in the text, how many Mbps
does a cable system allocate to upstream and how many to downstream?

How fast can a cable user receive data if the network is otherwise idle?

Multiplexing STS-1 multiple data streams, called tributaries, plays an important role in SONET. A 3:1
multiplexer multiplexes three input STS-1 tributaries onto one output STS-3 stream. This multiplexing is
done byte for byte, that is, the first three output bytes are the first bytes of tributaries 1, 2, and 3,
respectively. The next three output bytes are the second bytes of tributaries 1, 2, and 3, respectively,
and so on. Write a program that simulates this 3:1 multiplexer. Your program should consist of five
processes. The main process creates four processes, one each for the three STS-1 tributaries and one
for the multiplexer. Each tributary process reads in an STS-1 frame from an input file as a sequence of
810 bytes. They send their frames (byte by byte) to the multiplexer process. The multiplexer process
receives these bytes and outputs an STS-3 frame (byte by byte) by writing it on standard output. Use
pipes for communication among processes.



Chapter 3. The Data Link Layer

In this chapter we will study the design principles for layer 2, the data link layer. This study deals with the
algorithms for achieving reliable, efficient communication between two adjacent machines at the data link layer.
By adjacent, we mean that the two machines are connected by a communication channel that acts conceptually
like a wire (e.g., a coaxial cable, telephone line, or point-to-point wireless channel). The essential property of a
channel that makes it "wirelike" is that the bits are delivered in exactly the same order in which they are sent.

At first you might think this problem is so trivial that there is no software to study—machine A just puts the bits on
the wire, and machine B just takes them off. Unfortunately, communication circuits make errors occasionally.
Furthermore, they have only a finite data rate, and there is a nonzero propagation delay between the time a bit is
sent and the time it is received. These limitations have important implications for the efficiency of the data
transfer. The protocols used for communications must take all these factors into consideration. These protocols
are the subject of this chapter.

After an introduction to the key design issues present in the data link layer, we will start our study of its protocols
by looking at the nature of errors, their causes, and how they can be detected and corrected. Then we will study
a series of increasingly complex protocols, each one solving more and more of the problems present in this
layer. Finally, we will conclude with an examination of protocol modeling and correctness and give some
examples of data link protocols.

3.1 Data Link Layer Design Issues
The data link layer has a number of specific functions it can carry out. These functions include

1. Providing a well-defined service interface to the network layer.
2. Dealing with transmission errors.
3. Regulating the flow of data so that slow receivers are not swamped by fast senders.

To accomplish these goals, the data link layer takes the packets it gets from the network layer and encapsulates
them into frames for transmission. Each frame contains a frame header, a payload field for holding the packet,
and a frame trailer, as illustrated in Fig. 3-1. Frame management forms the heart of what the data link layer
does. In the following sections we will examine all the above-mentioned issues in detail.

Figure 3-1. Relationship between packets and frames.
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Although this chapter is explicitly about the data link layer and the data link protocols, many of the principles we
will study here, such as error control and flow control, are found in transport and other protocols as well. In fact,
in many networks, these functions are found only in the upper layers and not in the data link layer. However, no
matter where they are found, the principles are pretty much the same, so it does not really matter where we
study them. In the data link layer they often show up in their simplest and purest forms, making this a good place
to examine them in detail.




3.1.1 Services Provided to the Network Layer

The function of the data link layer is to provide services to the network layer. The principal service is transferring
data from the network layer on the source machine to the network layer on the destination machine. On the
source machine is an entity, call it a process, in the network layer that hands some bits to the data link layer for
transmission to the destination. The job of the data link layer is to transmit the bits to the destination machine so
they can be handed over to the network layer there, as shown in Fig. 3-2(a). The actual transmission follows the
path of Fig. 3-2(b), but it is easier to think in terms of two data link layer processes communicating using a data
link protocol. For this reason, we will implicitly use the model of Fig. 3-2(a) throughout this chapter.

Figure 3-2. (a) Virtual communication. (b) Actual communication.
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The data link layer can be designed to offer various services. The actual services offered can vary from system
to system. Three reasonable possibilities that are commonly provided are

1. Unacknowledged connectionless service.
2. Acknowledged connectionless service.
3. Acknowledged connection-oriented service.

Let us consider each of these in turn.

Unacknowledged connectionless service consists of having the source machine send independent frames to the
destination machine without having the destination machine acknowledge them. No logical connection is
established beforehand or released afterward. If a frame is lost due to noise on the line, no attempt is made to
detect the loss or recover from it in the data link layer. This class of service is appropriate when the error rate is
very low so that recovery is left to higher layers. It is also appropriate for real-time traffic, such as voice, in which
late data are worse than bad data. Most LANs use unacknowledged connectionless service in the data link layer.

The next step up in terms of reliability is acknowledged connectionless service. When this service is offered,
there are still no logical connections used, but each frame sent is individually acknowledged. In this way, the
sender knows whether a frame has arrived correctly. If it has not arrived within a specified time interval, it can be
sent again. This service is useful over unreliable channels, such as wireless systems.

It is perhaps worth emphasizing that providing acknowledgements in the data link layer is just an optimization,
never a requirement. The network layer can always send a packet and wait for it to be acknowledged. If the
acknowledgement is not forthcoming before the timer expires, the sender can just send the entire message
again. The trouble with this strategy is that frames usually have a strict maximum length imposed by the
hardware and network layer packets do not. If the average packet is broken up into, say, 10 frames, and 20



percent of all frames are lost, it may take a very long time for the packet to get through. If individual frames are
acknowledged and retransmitted, entire packets get through much faster. On reliable channels, such as fiber,
the overhead of a heavyweight data link protocol may be unnecessary, but on wireless channels, with their
inherent unreliability, it is well worth the cost.

Getting back to our services, the most sophisticated service the data link layer can provide to the network layer
is connection-oriented service. With this service, the source and destination machines establish a connection
before any data are transferred. Each frame sent over the connection is numbered, and the data link layer
guarantees that each frame sent is indeed received. Furthermore, it guarantees that each frame is received
exactly once and that all frames are received in the right order. With connectionless service, in contrast, it is
conceivable that a lost acknowledgement causes a packet to be sent several times and thus received several
times. Connection-oriented service, in contrast, provides the network layer processes with the equivalent of a
reliable bit stream.

When connection-oriented service is used, transfers go through three distinct phases. In the first phase, the
connection is established by having both sides initialize variables and counters needed to keep track of which
frames have been received and which ones have not. In the second phase, one or more frames are actually
transmitted. In the third and final phase, the connection is released, freeing up the variables, buffers, and other
resources used to maintain the connection.

Consider a typical example: a WAN subnet consisting of routers connected by point-to-point leased telephone
lines. When a frame arrives at a router, the hardware checks it for errors (using techniques we will study late in
this chapter), then passes the frame to the data link layer software (which might be embedded in a chip on the
network interface board). The data link layer software checks to see if this is the frame expected, and if so, gives
the packet contained in the payload field to the routing software. The routing software then chooses the
appropriate outgoing line and passes the packet back down to the data link layer software, which then transmits
it. The flow over two routers is shown in Fig. 3-3.

Figure 3-3. Placement of the data link protocol.
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The routing code frequently wants the job done right, that is, with reliable, sequenced connections on each of the
point-to-point lines. It does not want to be bothered too often with packets that got lost on the way. It is up to the
data link protocol, shown in the dotted rectangle, to make unreliable communication lines look perfect or, at
least, fairly good. As an aside, although we have shown multiple copies of the data link layer software in each
router, in fact, one copy handles all the lines, with different tables and data structures for each one.

3.1.2 Framing

To provide service to the network layer, the data link layer must use the service provided to it by the physical
layer. What the physical layer does is accept a raw bit stream and attempt to deliver it to the destination. This bit
stream is not guaranteed to be error free. The number of bits received may be less than, equal to, or more than



the number of bits transmitted, and they may have different values. It is up to the data link layer to detect and, if
necessary, correct errors.

The usual approach is for the data link layer to break the bit stream up into discrete frames and compute the
checksum for each frame. (Checksum algorithms will be discussed later in this chapter.) When a frame arrives at
the destination, the checksum is recomputed. If the newly-computed checksum is different from the one
contained in the frame, the data link layer knows that an error has occurred and takes steps to deal with it (e.g.,
discarding the bad frame and possibly also sending back an error report).

Breaking the bit stream up into frames is more difficult than it at first appears. One way to achieve this framing is
to insert time gaps between frames, much like the spaces between words in ordinary text. However, networks
rarely make any guarantees about timing, so it is possible these gaps might be squeezed out or other gaps
might be inserted during transmission.

Since it is too risky to count on timing to mark the start and end of each frame, other methods have been
devised. In this section we will look at four methods:

Character count.

Flag bytes with byte stuffing.

Starting and ending flags, with bit stuffing.
Physical layer coding violations.

PN E

The first framing method uses a field in the header to specify the number of characters in the frame. When the
data link layer at the destination sees the character count, it knows how many characters follow and hence
where the end of the frame is. This technique is shown in Fig. 3-4(a) for four frames of sizes 5, 5, 8, and 8
characters, respectively.

Figure 3-4. A character stream. (a) Without errors. (b) With one error.
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The trouble with this algorithm is that the count can be garbled by a transmission error. For example, if the
character count of 5 in the second frame of Fig. 3-4(b) becomes a 7, the destination will get out of
synchronization and will be unable to locate the start of the next frame. Even if the checksum is incorrect so the
destination knows that the frame is bad, it still has no way of telling where the next frame starts. Sending a frame
back to the source asking for a retransmission does not help either, since the destination does not know how
many characters to skip over to get to the start of the retransmission. For this reason, the character count
method is rarely used anymore.

The second framing method gets around the problem of resynchronization after an error by having each frame
start and end with special bytes. In the past, the starting and ending bytes were different, but in recent years
most protocols have used the same hyte, called a flag byte, as both the starting and ending delimiter, as shown
in Fig. 3-5(a) as FLAG. In this way, if the receiver ever loses synchronization, it can just search for the flag byte
to find the end of the current frame. Two consecutive flag bytes indicate the end of one frame and start of the
next one.



Figure 3-5. (a) A frame delimited by flag bytes. (b) Four examples of byte sequences before and after
byte stuffing.
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A serious problem occurs with this method when binary data, such as object programs or floating-point numbers,
are being transmitted. It may easily happen that the flag byte's bit pattern occurs in the data. This situation will
usually interfere with the framing. One way to solve this problem is to have the sender's data link layer insert a
special escape byte (ESC) just before each "accidental” flag byte in the data. The data link layer on the receiving
end removes the escape byte before the data are given to the network layer. This technique is called byte
stuffing or character stuffing. Thus, a framing flag byte can be distinguished from one in the data by the absence
or presence of an escape byte before it.

Of course, the next question is: What happens if an escape byte occurs in the middle of the data? The answer is
that it, too, is stuffed with an escape byte. Thus, any single escape byte is part of an escape sequence, whereas
a doubled one indicates that a single escape occurred naturally in the data. Some examples are shown in Fig. 3-
5(b). In all cases, the byte sequence delivered after destuffing is exactly the same as the original byte sequence.

The byte-stuffing scheme depicted in Fig. 3-5 is a slight simplification of the one used in the PPP protocol that
most home computers use to communicate with their Internet service provider. We will discuss PPP later in this
chapter.

A major disadvantage of using this framing method is that it is closely tied to the use of 8-bit characters. Not all
character codes use 8-hit characters. For example. UNICODE uses 16-bit characters, As networks developed,
the disadvantages of embedding the character code length in the framing mechanism became more and more
obvious, so a new technique had to be developed to allow arbitrary sized characters.

The new technique allows data frames to contain an arbitrary number of bits and allows character codes with an
arbitrary number of bits per character. It works like this. Each frame begins and ends with a special bit pattern,
01111110 (in fact, a flag byte). Whenever the sender's data link layer encounters five consecutive 1s in the data,
it automatically stuffs a 0 bit into the outgoing bit stream. This bit stuffing is analogous to byte stuffing, in which
an escape byte is stuffed into the outgoing character stream before a flag byte in the data.

When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it automatically destuffs (i.e.,
deletes) the 0 bit. Just as byte stuffing is completely transparent to the network layer in both computers, so is bit
stuffing. If the user data contain the flag pattern, 01111110, this flag is transmitted as 011111010 but stored in
the receiver's memory as 01111110. Figure 3-6 gives an example of bit stuffing.

Figure 3-6. Bit stuffing. (a) The original data. (b) The data as they appear on the line. (c) The data as they
are stored in the receiver's memory after destuffing.
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With bit stuffing, the boundary between two frames can be unambiguously recognized by the flag pattern. Thus,
if the receiver loses track of where it is, all it has to do is scan the input for flag sequences, since they can only
occur at frame boundaries and never within the data.

The last method of framing is only applicable to networks in which the encoding on the physical medium
contains some redundancy. For example, some LANs encode 1 bit of data by using 2 physical bits. Normally, a 1
bit is a high-low pair and a 0 bit is a low-high pair. The scheme means that every data bit has a transition in the
middle, making it easy for the receiver to locate the bit boundaries. The combinations high-high and low-low are
not used for data but are used for delimiting frames in some protocols.

As a final note on framing, many data link protocols use a combination of a character count with one of the other
methods for extra safety. When a frame arrives, the count field is used to locate the end of the frame. Only if the
appropriate delimiter is present at that position and the checksum is correct is the frame accepted as valid.
Otherwise, the input stream is scanned for the next delimiter.

3.1.3 Error Control

Having solved the problem of marking the start and end of each frame, we come to the next problem: how to
make sure all frames are eventually delivered to the network layer at the destination and in the proper order.
Suppose that the sender just kept outputting frames without regard to whether they were arriving properly. This
might be fine for unacknowledged connectionless service, but would most certainly not be fine for reliable,
connection-oriented service.

The usual way to ensure reliable delivery is to provide the sender with some feedback about what is happening
at the other end of the line. Typically, the protocol calls for the receiver to send back special control frames
bearing positive or negative acknowledgements about the incoming frames. If the sender receives a positive
acknowledgement about a frame, it knows the frame has arrived safely. On the other hand, a negative
acknowledgement means that something has gone wrong, and the frame must be transmitted again.

An additional complication comes from the possibility that hardware troubles may cause a frame to vanish
completely (e.g., in a noise burst). In this case, the receiver will not react at all, since it has no reason to react. It
should be clear that a protocol in which the sender transmits a frame and then waits for an acknowledgement,
positive or negative, will hang forever if a frame is ever lost due to, for example, malfunctioning hardware.

This possibility is dealt with by introducing timers into the data link layer. When the sender transmits a frame, it
generally also starts a timer. The timer is set to expire after an interval long enough for the frame to reach the
destination, be processed there, and have the acknowledgement propagate back to the sender. Normally, the
frame will be correctly received and the acknowledgement will get back before the timer runs out, in which case
the timer will be canceled.

However, if either the frame or the acknowledgement is lost, the timer will go off, alerting the sender to a
potential problem. The obvious solution is to just transmit the frame again. However, when frames may be
transmitted multiple times there is a danger that the receiver will accept the same frame two or more times and
pass it to the network layer more than once. To prevent this from happening, it is generally necessary to assign
sequence numbers to outgoing frames, so that the receiver can distinguish retransmissions from originals.

The whole issue of managing the timers and sequence numbers so as to ensure that each frame is ultimately
passed to the network layer at the destination exactly once, no more and no less, is an important part of the data
link layer's duties. Later in this chapter, we will look at a series of increasingly sophisticated examples to see
how this management is done.



3.1.4 Flow Control

Another important design issue that occurs in the data link layer (and higher layers as well) is what to do with a
sender that systematically wants to transmit frames faster than the receiver can accept them. This situation can
easily occur when the sender is running on a fast (or lightly loaded) computer and the receiver is running on a
slow (or heavily loaded) machine. The sender keeps pumping the frames out at a high rate until the receiver is
completely swamped. Even if the transmission is error free, at a certain point the receiver will simply be unable
to handle the frames as they arrive and will start to lose some. Clearly, something has to be done to prevent this
situation.

Two approaches are commonly used. In the first one, feedback-based flow control, the receiver sends back
information to the sender giving it permission to send more data or at least telling the sender how the receiver is
doing. In the second one, rate-based flow control, the protocol has a built-in mechanism that limits the rate at
which senders may transmit data, without using feedback from the receiver. In this chapter we will study
feedback-based flow control schemes because rate-based schemes are never used in the data link layer. We
will look at rate-based schemes in Chap. 5.

Various feedback-based flow control schemes are known, but most of them use the same basic principle. The
protocol contains well-defined rules about when a sender may transmit the next frame. These rules often prohibit
frames from being sent until the receiver has granted permission, either implicitly or explicitly. For example,
when a connection is set up, the receiver might say: "You may send me n frames now, but after they have been
sent, do not send any more until | have told you to continue." We will examine the details shortly.

3.2 Error Detection and Correction

As we saw in Chap. 2, the telephone system has three parts: the switches, the interoffice trunks, and the local
loops. The first two are now almost entirely digital in most developed countries. The local loops are still analog
twisted copper pairs and will continue to be so for years due to the enormous expense of replacing them. While
errors are rare on the digital part, they are still common on the local loops. Furthermore, wireless communication
is becoming more common, and the error rates here are orders of magnitude worse than on the interoffice fiber
trunks. The conclusion is: transmission errors are going to be with us for many years to come. We have to learn
how to deal with them.

As a result of the physical processes that generate them, errors on some media (e.g., radio) tend to come in
bursts rather than singly. Having the errors come in bursts has both advantages and disadvantages over
isolated single-bit errors. On the advantage side, computer data are always sent in blocks of bits. Suppose that
the block size is 1000 bits and the error rate is 0.001 per bit. If errors were independent, most blocks would
contain an error. If the errors came in bursts of 100 however, only one or two blocks in 100 would be affected, on
average. The disadvantage of burst errors is that they are much harder to correct than are isolated errors.

3.2.1 Error-Correcting Codes

Network designers have developed two basic strategies for dealing with errors. One way is to include enough
redundant information along with each block of data sent, to enable the receiver to deduce what the transmitted
data must have been. The other way is to include only enough redundancy to allow the receiver to deduce that
an error occurred, but not which error, and have it request a retransmission. The former strategy uses error-
correcting codes and the latter uses error-detecting codes. The use of error-correcting codes is often referred to
as forward error correction.

Each of these techniques occupies a different ecological niche. On channels that are highly reliable, such as
fiber, it is cheaper to use an error detecting code and just retransmit the occasional block found to be faulty.
However, on channels such as wireless links that make many errors, it is better to add enough redundancy to
each block for the receiver to be able to figure out what the original block was, rather than relying on a
retransmission, which itself may be in error.

To understand how errors can be handled, it is necessary to look closely at what an error really is. Normally, a
frame consists of m data (i.e., message) bits and r redundant, or check, bits. Let the total length be n (i.e., n=m
+ ). An n-bit unit containing data and check bits is often referred to as an n-bit codeword.



Given any two codewords, say, 10001001 and 10110001, it is possible to determine how many corresponding
bits differ. In this case, 3 bits differ. To determine how many bits differ, just exclusive OR the two codewords and
count the number of 1 bits in the result, for example:

10001001
10110001
00111000

The number of bit positions in which two codewords differ is called the Hamming distance (Hamming, 1950). Its
significance is that if two codewords are a Hamming distance d apart, it will require d single-bit errors to convert
one into the other.

In most data transmission applications, all 2" possible data messages are legal, but due to the way the check
bits are computed, not all of the 2" possible codewords are used. Given the algorithm for computing the check
bits, it is possible to construct a complete list of the legal codewords, and from this list find the two codewords
whose Hamming distance is minimum. This distance is the Hamming distance of the complete code.

The error-detecting and error-correcting properties of a code depend on its Hamming distance. To detect d
errors, you need a distance d + 1 code because with such a code there is no way that d single-bit errors can
change a valid codeword into another valid codeword. When the receiver sees an invalid codeword, it can tell
that a transmission error has occurred. Similarly, to correct d errors, you need a distance 2d + 1 code because
that way the legal codewords are so far apart that even with d changes, the original codeword is still closer than
any other codeword, so it can be uniquely determined.

As a simple example of an error-detecting code, consider a code in which a single parity bit is appended to the
data. The parity bit is chosen so that the number of 1 bits in the codeword is even (or odd). For example, when
1011010 is sent in even parity, a bit is added to the end to make it 10110100. With odd parity 1011010 becomes
10110101. A code with a single parity bit has a distance 2, since any single-bit error produces a codeword with
the wrong parity. It can be used to detect single errors.

As a simple example of an error-correcting code, consider a code with only four valid codewords:
0000000000, 0000011111, 1111100000, and 1111111111

This code has a distance 5, which means that it can correct double errors. If the codeword 0000000111 arrives,
the receiver knows that the original must have been 0000011111. If, however, a triple error changes
0000000000 into 0000000111, the error will not be corrected properly.

Imagine that we want to design a code with m message bits and r check bits that will allow all single errors to be
corrected. Each of the 2™ legal messages has n illegal codewords at a distance 1 from it. These are formed by
systematically inverting each of the n bits in the n-bit codeword formed from it. Thus, each of the 2™ legal
messages requires n + 1 bit patterns dedicated to it. Since the total number of bit patterns is 2", we must have (n

<

+1)2™ ==2". Using n = m + r, this requirement becomes (m + r + 1) =2". Given m, this puts a lower limit on the
number of check bits needed to correct single errors.

This theoretical lower limit can, in fact, be achieved using a method due to Hamming (1950). The bits of the
codeword are numbered consecutively, starting with bit 1 at the left end, bit 2 to its immediate right, and so on.
The bits that are powers of 2 (1, 2, 4, 8, 16, etc.) are check bits. The rest (3, 5, 6, 7, 9, etc.) are filled up with the
m data bits. Each check bit forces the parity of some collection of bits, including itself, to be even (or odd). A bit
may be included in several parity computations. To see which check bits the data bit in position k contributes to,
rewrite k as a sum of powers of 2. For example, 11 =1+2+8and 29 =1 + 4 + 8 + 16. A bit is checked by just
those check bits occurring in its expansion (e.g., bit 11 is checked by bits 1, 2, and 8).



When a codeword arrives, the receiver initializes a counter to zero. It then examines each check bit, k (k = 1, 2,
4, 8, ...), to see if it has the correct parity. If not, the receiver adds k to the counter. If the counter is zero after all
the check bits have been examined (i.e., if they were all correct), the codeword is accepted as valid. If the
counter is nonzero, it contains the number of the incorrect bit. For example, if check bits 1, 2, and 8 are in error,
the inverted bit is 11, because it is the only one checked by bits 1, 2, and 8. Figure 3-7 shows some 7-bit ASCII
characters encoded as 11-bit codewords using a Hamming code. Remember that the data are found in bit
positions 3, 5, 6, 7, 9, 10, and 11.

Figure 3-7. Use of a Hamming code to correct burst errors.
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Hamming codes can only correct single errors. However, there is a trick that can be used to permit Hamming
codes to correct burst errors. A sequence of k consecutive codewords are arranged as a matrix, one codeword
per row. Normally, the data would be transmitted one codeword at a time, from left to right. To correct burst
errors, the data should be transmitted one column at a time, starting with the leftmost column. When all k bits
have been sent, the second column is sent, and so on, as indicated in Fig. 3-7. When the frame arrives at the
receiver, the matrix is reconstructed, one column at a time. If a burst error of length k occurs, at most 1 bit in
each of the k codewords will have been affected, but the Hamming code can correct one error per codeword, so
the entire block can be restored. This method uses kr check bits to make blocks of km data bits immune to a
single burst error of length k or less.

3.2.2 Error-Detecting Codes

Error-correcting codes are widely used on wireless links, which are notoriously noisy and error prone when
compared to copper wire or optical fibers. Without error-correcting codes, it would be hard to get anything
through. However, over copper wire or fiber, the error rate is much lower, so error detection and retransmission
is usually more efficient there for dealing with the occasional error.

As a simple example, consider a channel on which errors are isolated and the error rate is 10° per bit. Let the
block size be 1000 bits. To provide error correction for 1000-bit blocks, 10 check bits are needed; a megabit of
data would require 10,000 check bits. To merely detect a block with a single 1-bit error, one parity bit per block
will suffice. Once every 1000 blocks, an extra block (1001 bits) will have to be transmitted. The total overhead for
the error detection + retransmission method is only 2001 bits per megabit of data, versus 10,000 bits for a
Hamming code.

If a single parity bit is added to a block and the block is badly garbled by a long burst error, the probability that
the error will be detected is only 0.5, which is hardly acceptable. The odds can be improved considerably if each
block to be sent is regarded as a rectangular matrix n bits wide and k bits high, as described above. A parity bit
is computed separately for each column and affixed to the matrix as the last row. The matrix is then transmitted
one row at a time. When the block arrives, the receiver checks all the parity bits. If any one of them is wrong, the
receiver requests a retransmission of the block. Additional retransmissions are requested as needed until an
entire block is received without any parity errors.



This method can detect a single burst of length n, since only 1 bit per column will be changed. A burst of length n
+ 1 will pass undetected, however, if the first bit is inverted, the last bit is inverted, and all the other bits are
correct. (A burst error does not imply that all the bits are wrong; it just implies that at least the first and last are
wrong.) If the block is badly garbled by a long burst or by multiple shorter bursts, the probability that any of the n
columns will have the correct parity, by accident, is 0.5, so the probability of a bad block being accepted when it
should not be is 2.

Although the above scheme may sometimes be adequate, in practice, another method is in widespread use: the
polynomial code, also known as a CRC (Cyclic Redundancy Check). Polynomial codes are based upon treating
bit strings as representations of polynomials with coefficients of 0 and 1 only. A k-bit frame is regarded as the
coefficient list for a polynomial with k terms, ranging from x“ *to x°. Such a polynomial is said to be of degree k -
1. The high-order (leftmost) bit is the coefficient of x“ "% the next bit is the coefficient of x* 2, and so on. For
efamgle, 110001 has 6 bits and thus represents a six-term polynomial with coefficients 1, 1, 0, 0, 0, and 1: x° +
X+ X

Polynomial arithmetic is done modulo 2, according to the rules of algebraic field theory. There are no carries for
addition or borrows for subtraction. Both addition and subtraction are identical to exclusive OR. For example:

10011011 00110011 11110000 01010101
+ 1O01010 + 11001101 = 10100110 = 10101111

01010001 ILL1LTI0 01o10110 11111010

Long division is carried out the same way as it is in binary except that the subtraction is done modulo 2, as
above. A divisor is said "to go into" a dividend if the dividend has as many bits as the divisor.

When the polynomial code method is employed, the sender and receiver must agree upon a generator
polynomial, G(x), in advance. Both the high- and low-order bits of the generator must be 1. To compute the
checksum for some frame with m bits, corresponding to the polynomial M(x), the frame must be longer than the
generator polynomial. The idea is to append a checksum to the end of the frame in such a way that the
polynomial represented by the checksummed frame is divisible by G(x). When the receiver gets the
checksummed frame, it tries dividing it by G(x). If there is a remainder, there has been a transmission error.

The algorithm for computing the checksum is as follows:

1. Letr be the degree of G(x). Append r zero bits to the low-order end of the frame so it now contains m +r
bits and corresponds to the polynomial x'"M(x).

2. Divide the bit string corresponding to G(x) into the bit string corresponding to x'M(x), using modulo 2
division.

3. Subtract the remainder (which is always r or fewer bits) from the bit string corresponding to x'M(x) using
modulo 2 subtraction. The result is the checksummed frame to be transmitted. Call its polynomial T(x).

Figure 3-8 illustrates the calculation for a frame 1101011011 using the generator G(x) = x* + x + 1.

Figure 3-8. Calculation of the polynomial code checksum.
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It should be clear that T(x) is divisible (modulo 2) by G(x). In any division problem, if you diminish the dividend by
the remainder, what is left over is divisible by the divisor. For example, in base 10, if you divide 210,278 by
10,941, the remainder is 2399. By subtracting 2399 from 210,278, what is left over (207,879) is divisible by
10,941.

Now let us analyze the power of this method. What kinds of errors will be detected? Imagine that a transmission
error occurs, so that instead of the bit string for T(x) arriving, T(x) + E(X) arrives. Each 1 bit in E(X) corresponds
to a bit that has been inverted. If there are k 1 bits in E(X), k single-bit errors have occurred. A single burst error
is characterized by an initial 1, a mixture of Os and 1s, and a final 1, with all other bits being 0.

Upon receiving the checksummed frame, the receiver divides it by G(x); that is, it computes [T(x) + E(X)]/G(X).
T(x)/G(x) is 0, so the result of the computation is simply E(X)/G(x). Those errors that happen to correspond to
polynomials containing G(x) as a factor will slip by; all other errors will be caught.

If there has been a single-bit error, E(x) = X, where i determines which bit is in error. If G(X) contains two or more
terms, it will never divide E(x), so all single-bit errors will be detected.

If there have been two isolated single-bit errors, E(x) = X' + X, where i > j. Alternatively, this can be written as
E(x) = X(xX' "' + 1). If we assume that G(x) is not divisible by x, a sufficient condition for all double errors to be
detected is that G(x) does not divide X< + 1 for any k up to the maximum value of i - j (i.e., up to the maximum
frame length). Simple, low-degree polynomials that give protection to long frames are known. For example, x*° +
x* + 1 will not divide x* + 1 for any value of k below 32,768.



If there are an odd number of bits in error, E(X) contains an odd number of terms (e.g., xX° + x* + 1, but not x* +
1). Interestingly, no polynomial with an odd number of terms has x + 1 as a factor in the modulo 2 system. By
making x + 1a factor of G(x), we can catch all errors consisting of an odd number of inverted bits.

To see that no polynomial with an odd number of terms is divisible by x + 1, assume that E(x) has an odd
number of terms and is divisible by x + 1. Factor E(x) into (x + 1) Q(x). Now evaluate E(1) = (1 + 1)Q(1). Since 1
+ 1 = 0 (modulo 2), E(1) must be zero. If E(x) has an odd number of terms, substituting 1 for x everywhere will
always yield 1 as the result. Thus, no polynomial with an odd number of terms is divisible by x + 1.

<

Finally, and most importantly, a polynomial code with r check bits will detect all burst errors of length =r. A
burst error of length k can be represented by x'(xk "1+ .. + 1), where i determines how far from the right-hand
end of the received frame the burst is located. If G(x) contains an x° term, it will not have x' as a factor, so if the

degree of the parenthesized expression is less than the degree of G(x), the remainder can never be zero.

If the burst length is r + 1, the remainder of the division by G(x) will be zero if and only if the burst is identical to
G(x). By definition of a burst, the first and last bits must be 1, so whether it matches depends on the r - 1
intermediate bits. If all combinations are regarded as equally likely, the probability of such an incorrect frame
being accepted as valid is %" 1.

It can also be shown that when an error burst longer than r + 1 bits occurs or when several shorter bursts occur,
the probability of a bad frame getting through unnoticed is %', assuming that all bit patterns are equally likely.

Certain polynomials have become international standards. The one used in IEEE 802 is
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Among other desirable properties, it has the property that it detects all bursts of length 32 or less and all bursts
affecting an odd number of bits.

Although the calculation required to compute the checksum may seem complicated, Peterson and Brown (1961)
have shown that a simple shift register circuit can be constructed to compute and verify the checksums in
hardware. In practice, this hardware is nearly always used. Virtually all LANs use it and point-to-point lines do,
too, in some cases.

For decades, it has been assumed that frames to be checksummed contain random bits. All analyses of
checksum algorithms have been made under this assumption. Inspection of real data has shown this
assumption to be quite wrong. As a consequence, under some circumstances, undetected errors are much more
common than had been previously thought (Partridge et al., 1995).

3.3 Elementary Data Link Protocols

To introduce the subject of protocols, we will begin by looking at three protocols of increasing complexity. For
interested readers, a simulator for these and subsequent protocols is available via the Web (see the preface).
Before we look at the protocols, it is useful to make explicit some of the assumptions underlying the model of
communication. To start with, we assume that in the physical layer, data link layer, and network layer are
independent processes that communicate by passing messages back and forth. In many cases, the physical and
data link layer processes will be running on a processor inside a special network I/O chip and the network layer
code will be running on the main CPU. However, other implementations are also possible (e.g., three processes
inside a single I/O chip; or the physical and data link layers as procedures called by the network layer process).
In any event, treating the three layers as separate processes makes the discussion conceptually cleaner and
also serves to emphasize the independence of the layers.

Another key assumption is that machine A wants to send a long stream of data to machine B, using a reliable,
connection-oriented service. Later, we will consider the case where B also wants to send data to A



simultaneously. A is assumed to have an infinite supply of data ready to send and never has to wait for data to
be produced. Instead, when A's data link layer asks for data, the network layer is always able to comply
immediately. (This restriction, too, will be dropped later.)

We also assume that machines do not crash. That is, these protocols deal with communication errors, but not
the problems caused by computers crashing and rebooting.

As far as the data link layer is concerned, the packet passed across the interface to it from the network layer is
pure data, whose every bit is to be delivered to the destination's network layer. The fact that the destination's
network layer may interpret part of the packet as a header is of no concern to the data link layer.

When the data link layer accepts a packet, it encapsulates the packet in a frame by adding a data link header
and trailer to it (see Fig. 3-1). Thus, a frame consists of an embedded packet, some control information (in the
header), and a checksum (in the trailer). The frame is then transmitted to the data link layer on the other
machine. We will assume that there exist suitable library procedures to_physical_layer to send a frame and
from_physical_layer to receive a frame. The transmitting hardware computes and appends the checksum (thus
creating the trailer), so that the datalink layer software need not worry about it. The polynomial algorithm
discussed earlier in this chapter might be used, for example.

Initially, the receiver has nothing to do. It just sits around waiting for something to happen. In the example
protocols of this chapter we will indicate that the data link layer is waiting for something to happen by the
procedure call wait_for_event(&event). This procedure only returns when something has happened (e.g., a
frame has arrived). Upon return, the variable event tells what happened. The set of possible events differs for
the various protocols to be described and will be defined separately for each protocol. Note that in a more
realistic situation, the data link layer will not sit in a tight loop waiting for an event, as we have suggested, but will
receive an interrupt, which will cause it to stop whatever it was doing and go handle the incoming frame.
Nevertheless, for simplicity we will ignore all the details of parallel activity within the data link layer and assume
that it is dedicated full time to handling just our one channel.

When a frame arrives at the receiver, the hardware computes the checksum. If the checksum is incorrect (i.e.,
there was a transmission error), the data link layer is so informed (event = cksum_err). If the inbound frame
arrived undamaged, the data link layer is also informed (event = frame_arrival) so that it can acquire the frame
for inspection using from_physical_layer. As soon as the receiving data link layer has acquired an undamaged
frame, it checks the control information in the header, and if everything is all right, passes the packet portion to
the network layer. Under no circumstances is a frame header ever given to a network layer.

There is a good reason why the network layer must never be given any part of the frame header: to keep the
network and data link protocols completely separate. As long as the network layer knows nothing at all about the
data link protocol or the frame format, these things can be changed without requiring changes to the network
layer's software. Providing a rigid interface between network layer and data link layer greatly simplifies the
software design because communication protocols in different layers can evolve independently.

Figure 3-9 shows some declarations (in C) common to many of the protocols to be discussed later. Five data
structures are defined there: boolean, seq_nr, packet, frame_kind, and frame. A boolean is an enumerated type
and can take on the values true and false. A seq_nr is a small integer used to number the frames so that we can
tell them apart. These sequence numbers run from O up to and including MAX_SEQ, which is defined in each
protocol needing it. A packet is the unit of information exchanged between the network layer and the data link
layer on the same machine, or between network layer peers. In our model it always contains MAX_PKT bytes,
but more realistically it would be of variable length.

Figure 3-9. Some definitions needed in the protocols to follow. These definitions are located in the file
protocol.h.



#define MAX_PKT 1024 i* determines packet size in bytes */

typedef enum {false, true} boolean; * boolean type */
typedef unsignad int seq_nr; /* sequence or ack numbers */
typedef struct {unsigned char data[MAX_PKT];} packet’* packet definition «/
typedef enum {data, ack, nak} frame_kind; f* frame_kind definition =/
typedef struct { /* frames are transported in this layer */
frame_kind kind; /* what kind of a frame is it? =/
seg_nr seq; /* sequence number =/
seq._nr ack; /= acknowledgement number */
packet info, i* the network layer packet +/
} frame;

/= Wait for an event to happen; return its type in event. +/
void wait_for_sventievent_type *event);

f= Fetch a packet from the network layer for transmission on the channel. =/
void from_network_layer(packet *p);

f= Deliver information from an inbound frame to the network layer. =/
void to_network_layer{packet *p);

/* Go get an inbound frame from the physical layer and copy it tor. */
void from_physical_layer(frame *r);

f* Pass the frame to the physical layer for transmission. =/
vioid to_physical_layer(frame *s);

f= Start the clock running and enable the timeout event. «/
void start_timer{seqg_nr k);

/= Stop the clock and disable the timeout event. */
vioid stop_timer{seg_nr k);

f= Start an auxiliary timer and enable the ack_timeout event, */
vioid start_ack_timer{void);

/= Stop the auxiliary timer and disable the ack_timeout event, =/
void stop_ack_timer(void);

f= Allow the network layer to cause a network_layer_ready event. +/
void enable_network_layer(void);

[+ Forbid the network layer from causing a network_layer_ready event. +/
void disable_network_layer{void);

f* Macro inc is expanded in-line: Increment k circularly. +/
#define inc(k) if (k < MAX_SEQ)k=k+1;else k=0

A frame is composed of four fields: kind, seq, ack, and info, the first three of which contain control information
and the last of which may contain actual data to be transferred. These control fields are collectively called the

frame header.

The kind field tells whether there are any data in the frame, because some of the protocols distinguish frames
containing only control information from those containing data as well. The seq and ack fields are used for
sequence numbers and acknowledgements, respectively; their use will be described in more detail later. The info
field of a data frame contains a single packet; the info field of a control frame is not used. A more realistic
implementation would use a variable-length info field, omitting it altogether for control frames.

Again, it is important to realize the relationship between a packet and a frame. The network layer builds a packet
by taking a message from the transport layer and adding the network layer header to it. This packet is passed to
the data link layer for inclusion in the info field of an outgoing frame. When the frame arrives at the destination,
the data link layer extracts the packet from the frame and passes the packet to the network layer. In this manner,

the network layer can act as though machines can exchange packets directly.



A number of procedures are also listed in Fig. 3-9. These are library routines whose details are implementation
dependent and whose inner workings will not concern us further here. The procedure wait_for_event sits in a
tight loop waiting for something to happen, as mentioned earlier. The procedures to_network_layer and
from_network_layer are used by the data link layer to pass packets to the network layer and accept packets from
the network layer, respectively. Note that from_physical layer and to_physical layer pass frames between the
data link layer and physical layer. On the other hand, the procedures to_network_layer and from_network_layer
pass packets between the data link layer and network layer. In other words, to_network layer and
from_network_layer deal with the interface between layers 2 and 3, whereas from_physical layer and
to_physical_layer deal with the interface between layers 1 and 2.

In most of the protocols, we assume that the channel is unreliable and loses entire frames upon occasion. To be
able to recover from such calamities, the sending data link layer must start an internal timer or clock whenever it
sends a frame. If no reply has been received within a certain predetermined time interval, the clock times out and
the data link layer receives an interrupt signal.

In our protocols this is handled by allowing the procedure wait for_event to return event = timeout. The
procedures start_timer and stop_timer turn the timer on and off, respectively. Timeouts are possible only when
the timer is running. It is explicitly permitted to call start_timer while the timer is running; such a call simply resets
the clock to cause the next timeout after a full timer interval has elapsed (unless it is reset or turned off in the
meanwhile).

The procedures start ack timer and stop_ack timer control an auxiliary timer used to generate
acknowledgements under certain conditions.

The procedures enable_network_layer and disable_network_layer are used in the more sophisticated protocols,
where we no longer assume that the network layer always has packets to send. When the data link layer
enables the network layer, the network layer is then permitted to interrupt when it has a packet to be sent. We
indicate this with event = network_layer_ready. When a network layer is disabled, it may not cause such events.
By being careful about when it enables and disables its network layer, the data link layer can prevent the
network layer from swamping it with packets for which it has no buffer space.

Frame sequence numbers are always in the range 0 to MAX_SEQ (inclusive), where MAX_SEQ is different for
the different protocols. It is frequently necessary to advance a sequence number by 1 circularly (i.e., MAX_SEQ
is followed by 0). The macro inc performs this incrementing. It has been defined as a macro because it is used
in-line within the critical path. As we will see later, the factor limiting network performance is often protocol
processing, so defining simple operations like this as macros does not affect the readability of the code but does
improve performance. Also, since MAX_SEQ will have different values in different protocols, by making it a
macro, it becomes possible to include all the protocols in the same binary without conflict. This ability is useful
for the simulator.

The declarations of Fig. 3-9 are part of each of the protocols to follow. To save space and to provide a
convenient reference, they have been extracted and listed together, but conceptually they should be merged
with the protocols themselves. In C, this merging is done by putting the definitions in a special header file, in this
case protocol.h, and using the #include facility of the C preprocessor to include them in the protocol files.

3.3.1 An Unrestricted Simplex Protocol

As an initial example we will consider a protocol that is as simple as it can be. Data are transmitted in one
direction only. Both the transmitting and receiving network layers are always ready. Processing time can be
ignored. Infinite buffer space is available. And best of all, the communication channel between the data link
layers never damages or loses frames. This thoroughly unrealistic protocol, which we will nickname "utopia,"” is
shown in Fig. 3-10.

Figure 3-10. An unrestricted simplex protocol.



f* Protocol 1 (utopia) provides for data transmission in one direction only, from
sender to receiver. The communication channel is assumed to be error free
and the receiver is assumed to be able to process all the input infinitely quickly.
Consequently, the sender just sits in a loop pumping data out onto the line as
fast as it can. =/

typedef enum {frame_arrival} event_type;
#include "protocol.h”

void sender{vaid)

{

frame s; {* buffer for an cutbound frame */

packet buffer; [+ buffer for an cutbound packet =/

while (true) {
from_network_layer{&buffer); /* go get something to send */
s.info = buffer; /* copy it into s for transmission */
to_physical_layer{&s); /* send it on its way */

} /* Tamorrow, and tomorrow, and tomorrow,

Creeps in this petty pace from day to day
To the last syllable of recorded time.
= Macbeth, V, v */

void receiver1({void)

{
framer,
event_type event; {* filled in by wait, but not used here =/
while (true) {
wait_for_avent(&event); /* only possibility is frame_arrival */
from_physical _layer(&r); {* go get the inbound frame =/
to_network_layer(&r.infa); /* pass the data to the network layer */

The protocol consists of two distinct procedures, a sender and a receiver. The sender runs in the data link layer
of the source machine, and the receiver runs in the data link layer of the destination machine. No sequence
numbers or acknowledgements are used here, so MAX_SEQ is not needed. The only event type possible is
frame_arrival (i.e., the arrival of an undamaged frame).

The sender is in an infinite while loop just pumping data out onto the line as fast as it can. The body of the loop
consists of three actions: go fetch a packet from the (always obliging) network layer, construct an outbound
frame using the variable s, and send the frame on its way. Only the info field of the frame is used by this
protocol, because the other fields have to do with error and flow control and there are no errors or flow control
restrictions here.

The receiver is equally simple. Initially, it waits for something to happen, the only possibility being the arrival of
an undamaged frame. Eventually, the frame arrives and the procedure wait_for_event returns, with event set to
frame_arrival (which is ignored anyway). The call to from_physical layer removes the newly arrived frame from
the hardware buffer and puts it in the variable r, where the receiver code can get at it. Finally, the data portion is
passed on to the network layer, and the data link layer settles back to wait for the next frame, effectively
suspending itself until the frame arrives.



3.3.2 A Simplex Stop-and-Wait Protocol

Now we will drop the most unrealistic restriction used in protocol 1: the ability of the receiving network layer to
process incoming data infinitely quickly (or equivalently, the presence in the receiving data link layer of an infinite
amount of buffer space in which to store all incoming frames while they are waiting their respective turns). The
communication channel is still assumed to be error free however, and the data traffic is still simplex.

The main problem we have to deal with here is how to prevent the sender from flooding the receiver with data
faster than the latter is able to process them. In essence, if the receiver requires a time Ot to execute
from_physical_layer plus to_network_layer, the sender must transmit at an average rate less than one frame per
time Ot. Moreover, if we assume that no automatic buffering and queueing are done within the receiver's
hardware, the sender must never transmit a new frame until the old one has been fetched by
from_physical_layer, lest the new one overwrite the old one.

In certain restricted circumstances (e.g., synchronous transmission and a receiving data link layer fully dedicated
to processing the one input line), it might be possible for the sender to simply insert a delay into protocol 1 to
slow it down sufficiently to keep from swamping the receiver. However, more usually, each data link layer will
have several lines to attend to, and the time interval between a frame arriving and its being processed may vary
considerably. If the network designers can calculate the worst-case behavior of the receiver, they can program
the sender to transmit so slowly that even if every frame suffers the maximum delay, there will be no overruns.
The trouble with this approach is that it is too conservative. It leads to a bandwidth utilization that is far below the
optimum, unless the best and worst cases are almost the same (i.e., the variation in the data link layer's reaction
time is small).

A more general solution to this dilemma is to have the receiver provide feedback to the sender. After having
passed a packet to its network layer, the receiver sends a little dummy frame back to the sender which, in effect,
gives the sender permission to transmit the next frame. After having sent a frame, the sender is required by the
protocol to bide its time until the little dummy (i.e., acknowledgement) frame arrives. Using feedback from the
receiver to let the sender know when it may send more data is an example of the flow control mentioned earlier.

Protocols in which the sender sends one frame and then waits for an acknowledgement before proceeding are
called stop-and-wait. Figure 3-11 gives an example of a simplex stop-and-wait protocol.

Figure 3-11. A simplex stop-and-wait protocol.



/* Protocol 2 {stop-and-wait) also provides for a one-directional flow of data from
sender to receiver. The communication channel is once again assumed to be error
free, as in protocol 1. However, this time, the receiver has only a finite buffer
capacity and a finite processing speed, so the protocol must explicitly prevent
the sender from flooding the receiver with data faster than it can be handled, =/

typedef enum {frame_arrival} event_type;
#include "protocol.h”

void sender2{void)

{

frame s; f* buffer for an outbound frame =/
packet buffer; f* buffer for an outbound packet =/
evant_type event; {* frame_arrival is the only possibility #/

while {true) {
from_network_layer{&buffer); /* go get something to send =/

s.info = buffer; /* copy it into s for transmission +/
to_physical_layer(&s); I+ bye-bye litlle frame */
wait_for_event{&event); /* do not proceed until given the go ahead +/

}
)

void receiver2(void)

{

framer, s, /* buffers for frames */

event_type event; f* frame_arrival is the only possibility =/

while {true) {
wait_for_event{&event); /* only possibility is frame_arrival */
from_physical_layer(&r); /* go get the inbound frame */
to_network_layer(&r.info); f* pass the data to the network layer +/
to_physical_layer{&s); f* send a dummy frame to awaken sender =/

Although data traffic in this example is simplex, going only from the sender to the receiver, frames do travel in
both directions. Consequently, the communication channel between the two data link layers needs to be capable
of bidirectional information transfer. However, this protocol entails a strict alternation of flow: first the sender
sends a frame, then the receiver sends a frame, then the sender sends another frame, then the receiver sends
another one, and so on. A half- duplex physical channel would suffice here.

As in protocol 1, the sender starts out by fetching a packet from the network layer, using it to construct a frame,
and sending it on its way. But now, unlike in protocol 1, the sender must wait until an acknowledgement frame
arrives before looping back and fetching the next packet from the network layer. The sending data link layer
need not even inspect the incoming frame: there is only one possibility. The incoming frame is always an
acknowledgement.

The only difference between receiverl and receiver?2 is that after delivering a packet to the network layer,
receiver2 sends an acknowledgement frame back to the sender before entering the wait loop again. Because
only the arrival of the frame back at the sender is important, not its contents, the receiver need not put any
particular information in it.

3.3.3 A Simplex Protocol for a Noisy Channel

Now let us consider the normal situation of a communication channel that makes errors. Frames may be either
damaged or lost completely. However, we assume that if a frame is damaged in transit, the receiver hardware
will detect this when it computes the checksum. If the frame is damaged in such a way that the checksum is
nevertheless correct, an unlikely occurrence, this protocol (and all other protocols) can fail (i.e., deliver an
incorrect packet to the network layer).



At first glance it might seem that a variation of protocol 2 would work: adding a timer. The sender could send a
frame, but the receiver would only send an acknowledgement frame if the data were correctly received. If a
damaged frame arrived at the receiver, it would be discarded. After a while the sender would time out and send
the frame again. This process would be repeated until the frame finally arrived intact.

The above scheme has a fatal flaw in it. Think about the problem and try to discover what might go wrong before
reading further.

To see what might go wrong, remember that it is the task of the data link layer processes to provide error-free,
transparent communication between network layer processes. The network layer on machine A gives a series of
packets to its data link layer, which must ensure that an identical series of packets are delivered to the network
layer on machine B by its data link layer. In particular, the network layer on B has no way of knowing that a
packet has been lost or duplicated, so the data link layer must guarantee that no combination of transmission
errors, however unlikely, can cause a duplicate packet to be delivered to a network layer.

Consider the following scenario:

1. The network layer on A gives packet 1 to its data link layer. The packet is correctly received at B and
passed to the network layer on B. B sends an acknowledgement frame back to A.

2. The acknowledgement frame gets lost completely. It just never arrives at all. Life would be a great deal
simpler if the channel mangled and lost only data frames and not control frames, but sad to say, the
channel is not very discriminating.

3. The data link layer on A eventually times out. Not having received an acknowledgement, it (incorrectly)
assumes that its data frame was lost or damaged and sends the frame containing packet 1 again.

4. The duplicate frame also arrives at the data link layer on B perfectly and is unwittingly passed to the
network layer there. If A is sending a file to B, part of the file will be duplicated (i.e., the copy of the file
made by B will be incorrect and the error will not have been detected). In other words, the protocol will
fail.

Clearly, what is needed is some way for the receiver to be able to distinguish a frame that it is seeing for the first
time from a retransmission. The obvious way to achieve this is to have the sender put a sequence number in the
header of each frame it sends. Then the receiver can check the sequence number of each arriving frame to see
if it is a new frame or a duplicate to be discarded.

Since a small frame header is desirable, the question arises: What is the minimum number of bits needed for the
sequence number? The only ambiguity in this protocol is between a frame, m, and its direct successor, m + 1. If
frame m is lost or damaged, the receiver will not acknowledge it, so the sender will keep trying to send it. Once it
has been correctly received, the receiver will send an acknowledgement to the sender. It is here that the
potential trouble crops up. Depending upon whether the acknowledgement frame gets back to the sender
correctly or not, the sender may try to send morm + 1.

The event that triggers the sender to start sending frame m + 2 is the arrival of an acknowledgement for frame m
+ 1. But this implies that m has been correctly received, and furthermore that its acknowledgement has also
been correctly received by the sender (otherwise, the sender would not have begun with m + 1, let alone m + 2).
As a consequence, the only ambiguity is between a frame and its immediate predecessor or successor, not
between the predecessor and successor themselves.

A 1-bit sequence number (0 or 1) is therefore sufficient. At each instant of time, the receiver expects a particular
sequence number next. Any arriving frame containing the wrong sequence number is rejected as a duplicate.
When a frame containing the correct sequence number arrives, it is accepted and passed to the network layer.
Then the expected sequence number is incremented modulo 2 (i.e., 0 becomes 1 and 1 becomes 0).

An example of this kind of protocol is shown in Fig. 3-12. Protocols in which the sender waits for a positive
acknowledgement before advancing to the next data item are often called PAR (Positive Acknowledgement with
Retransmission) or ARQ (Automatic Repeat reQuest). Like protocol 2, this one also transmits data only in one
direction.

Figure 3-12. A positive acknowledgement with retransmission protocol.



f+ Protocol 3 (par) allows unidirectional data flow over an unreliable channel. */

#define MAX_SEQ 1 f* must be 1 for protocol 3 =/
typedef enum {frame_amival, cksum_err, timeout} event_typs;

#tinclude "protocol.h”

void sender3{void)

{

seq_nr next_frame_to_send; I+ seq number of next outgoing frame */
frame s5; /* scratch vanable +/
packet buffer; /= bufter tor an outbound packet */
event_type event;
next_frame_to_send = 0; [+ initialize outbound sequence numbers +f
frorm_network layer(&buffer); [+ feteh first packet «/
while {true) {
s.info = buffer; /+ construct a frame for transmission =/
5.5e0 = next_frame _to_send, /* inser sequence number in frame
to_physical layer(&s); f+ gend it on its way ~/
start_limer{s.seq); /* if answer lakes too long, time out =/
wait_for event(&ewvent); f* frame_arrival, cksum_err, timeout =/
if {event == frame_arrival) {
from_physical layer{&s); I+ get the acknowledgement =/
if (s.ack == next frame to_send) {
stop_timer(s.ack); 1+ tum the timer off =/
from_network_layer(&buffer); [+ get the next one to send =/
inc(next_frame_to_send); f* invert next_frame_to_send +/
H

J
}
}

void receiver3{void)

{
saq_nr frame_expected;
framer, s;
avent_type event;

frame_expected = O
while (trug) {

wail_for_event{&event); f+ possibilities: frame_arrival, cksum_err =/
if (event == frame_arrival) { f* a valid frame has amived. «/
from_physical layer(&r); f+ go get the newly arrived frame +/
if (r.seq == frame_expected) | I+ this is what we have been waiting for. »/
to_network layer(&r.info); /* pass the data to the network layer /
inc(frame_expected); I+ next time expect the other sequence nr +/
s.ack = 1 - frame_expected, i tell which frame is being acked +/
to_physical_layer(&s); i+ send acknowledgement «/

Protocol 3 differs from its predecessors in that both sender and receiver have a variable whose value is
remembered while the data link layer is in the wait state. The sender remembers the sequence number of the
next frame to send in next_frame_to_send; the receiver remembers the sequence number of the next frame
expected in frame_expected. Each protocol has a short initialization phase before entering the infinite loop.

After transmitting a frame, the sender starts the timer running. If it was already running, it will be reset to allow
another full timer interval. The time interval should be chosen to allow enough time for the frame to get to the
receiver, for the receiver to process it in the worst case, and for the acknowledgement frame to propagate back
to the sender. Only when that time interval has elapsed is it safe to assume that either the transmitted frame or
its acknowledgement has been lost, and to send a duplicate. If the timeout interval is set too short, the sender
will transmit unnecessary frames. While these extra frames will not affect the correctness of the protocol, they
will hurt performance.



After transmitting a frame and starting the timer, the sender waits for something exciting to happen. Only three
possibilities exist: an acknowledgement frame arrives undamaged, a damaged acknowledgement frame
staggers in, or the timer expires. If a valid acknowledgement comes in, the sender fetches the next packet from
its network layer and puts it in the buffer, overwriting the previous packet. It also advances the sequence
number. If a damaged frame arrives or no frame at all arrives, neither the buffer nor the sequence number is
changed so that a duplicate can be sent.

When a valid frame arrives at the receiver, its sequence number is checked to see if it is a duplicate. If not, it is
accepted, passed to the network layer, and an acknowledgement is generated. Duplicates and damaged frames
are not passed to the network layer.

3.4 Sliding Window Protocols

In the previous protocols, data frames were transmitted in one direction only. In most practical situations, there is
a need for transmitting data in both directions. One way of achieving full-duplex data transmission is to have two
separate communication channels and use each one for simplex data traffic (in different directions). If this is
done, we have two separate physical circuits, each with a "forward" channel (for data) and a "reverse" channel
(for acknowledgements). In both cases the bandwidth of the reverse channel is almost entirely wasted. In effect,
the user is paying for two circuits but using only the capacity of one.

A better idea is to use the same circuit for data in both directions. After all, in protocols 2 and 3 it was already
being used to transmit frames both ways, and the reverse channel has the same capacity as the forward
channel. In this model the data frames from A to B are intermixed with the acknowledgement frames from A to B.
By looking at the kind field in the header of an incoming frame, the receiver can tell whether the frame is data or
acknowledgement.

Although interleaving data and control frames on the same circuit is an improvement over having two separate
physical circuits, yet another improvement is possible. When a data frame arrives, instead of immediately
sending a separate control frame, the receiver restrains itself and waits until the network layer passes it the next
packet. The acknowledgement is attached to the outgoing data frame (using the ack field in the frame header).
In effect, the acknowledgement gets a free ride on the next outgoing data frame. The technique of temporarily
delaying outgoing acknowledgements so that they can be hooked onto the next outgoing data frame is known as

piggybacking.

The principal advantage of using piggybacking over having distinct acknowledgement frames is a better use of
the available channel bandwidth. The ack field in the frame header costs only a few bits, whereas a separate
frame would need a header, the acknowledgement, and a checksum. In addition, fewer frames sent means
fewer "frame arrival" interrupts, and perhaps fewer buffers in the receiver, depending on how the receiver's
software is organized. In the next protocol to be examined, the piggyback field costs only 1 bit in the frame
header. It rarely costs more than a few bits.

However, piggybacking introduces a complication not present with separate acknowledgements. How long
should the data link layer wait for a packet onto which to piggyback the acknowledgement? If the data link layer
waits longer than the sender's timeout period, the frame will be retransmitted, defeating the whole purpose of
having acknowledgements. If the data link layer were an oracle and could foretell the future, it would know when
the next network layer packet was going to come in and could decide either to wait for it or send a separate
acknowledgement immediately, depending on how long the projected wait was going to be. Of course, the data
link layer cannot foretell the future, so it must resort to some ad hoc scheme, such as waiting a fixed number of
milliseconds. If a new packet arrives quickly, the acknowledgement is piggybacked onto it; otherwise, if no new
packet has arrived by the end of this time period, the data link layer just sends a separate acknowledgement
frame.

The next three protocols are bidirectional protocols that belong to a class called sliding window protocols. The
three differ among themselves in terms of efficiency, complexity, and buffer requirements, as discussed later. In
these, as in all sliding window protocols, each outbound frame contains a sequence number, ranging from 0 up
to some maximum. The maximum is usually 2" - 1 so the sequence number fits exactly in an n-bit field. The
stop-and-wait sliding window protocol uses n = 1, restricting the sequence numbers to 0 and 1, but more
sophisticated versions can use arbitrary n.



The essence of all sliding window protocols is that at any instant of time, the sender maintains a set of sequence
numbers corresponding to frames it is permitted to send. These frames are said to fall within the sending
window. Similarly, the receiver also maintains a receiving window corresponding to the set of frames it is
permitted to accept. The sender's window and the receiver's window need not have the same lower and upper
limits or even have the same size. In some protocols they are fixed in size, but in others they can grow or shrink
over the course of time as frames are sent and received.

Although these protocols give the data link layer more freedom about the order in which it may send and receive
frames, we have definitely not dropped the requirement that the protocol must deliver packets to the destination
network layer in the same order they were passed to the data link layer on the sending machine. Nor have we
changed the requirement that the physical communication channel is "wire-like," that is, it must deliver all frames
in the order sent.

The sequence numbers within the sender's window represent frames that have been sent or can be sent but are
as yet not acknowledged. Whenever a new packet arrives from the network layer, it is given the next highest
sequence number, and the upper edge of the window is advanced by one. When an acknowledgement comes
in, the lower edge is advanced by one. In this way the window continuously maintains a list of unacknowledged
frames. Figure 3-13 shows an example.

Figure 3-13. A sliding window of size 1, with a 3-bit sequence number. (a) Initially. (b) After the first frame
has been sent. (c) After the first frame has been received. (d) After the first acknowledgement has been
received.
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Since frames currently within the sender's window may ultimately be lost or damaged in transit, the sender must
keep all these frames in its memory for possible retransmission. Thus, if the maximum window size is n, the
sender needs n buffers to hold the unacknowledged frames. If the window ever grows to its maximum size, the
sending data link layer must forcibly shut off the network layer until another buffer becomes free.

The receiving data link layer's window corresponds to the frames it may accept. Any frame falling outside the
window is discarded without comment. When a frame whose sequence number is equal to the lower edge of the
window is received, it is passed to the network layer, an acknowledgement is generated, and the window is
rotated by one. Unlike the sender's window, the receiver's window always remains at its initial size. Note that a
window size of 1 means that the data link layer only accepts frames in order, but for larger windows this is not
so. The network layer, in contrast, is always fed data in the proper order, regardless of the data link layer's
window size.

Figure 3-13 shows an example with a maximum window size of 1. Initially, no frames are outstanding, so the
lower and upper edges of the sender's window are equal, but as time goes on, the situation progresses as
shown.



3.4.1 A One-Bit Sliding Window Protocol

Before tackling the general case, let us first examine a sliding window protocol with a maximum window size of
1. Such a protocol uses stop-and-wait since the sender transmits a frame and waits for its acknowledgement
before sending the next one.

Figure 3-14 depicts such a protocol. Like the others, it starts out by defining some variables.
Next_frame_to_send tells which frame the sender is trying to send. Similarly, frame_expected tells which frame
the receiver is expecting. In both cases, 0 and 1 are the only possibilities.

Figure 3-14. A 1-bit sliding window protocol.

f* Protocol 4 (sliding window) is bidirectional, */

#define MAX_SEQ 1 /* must be 1 for protocol 4 =/
typedef enum {frame_armival, cksum_err, timeout} event_type;

#include "protocol.h"
void protocold (vaoid)

{
seq_nr next_frame_to_send,
seq_nr frame_expected,;
framer, s;
packet buffer;
event_type event;
next_frame_to_send = 0;
frame_expected = 0;
from_network_layer(&buffer);
s.info = buffer;
5.58Q = next_frame_to_send,
g.ack = 1 - frame_expected,
lo_physical_layer(&s);
start_timer(s.seq);
while (true) {
wait_for_event(&event);
if (event == frame_arrival) {
from_physical_layer{&r);
if (r.seq == frame_expected) {
to_natwark_layer{&r.info);
inciframe_expected);

}

if (r.ack == next_frame_to_send) {
stop_timer(r.ack);
from_network_layer{&bufier);
inc{next_frame_to_send);

}

s.info = buffer;

5.58q = next_frame_to_send;
s.ack = 1 - frame_expected;
to_physical _layer{&s);
start_timer{s.seq);

M 0or 1 only

f*0or1 only *f

/* scratch variables »/

/= current packet being sent =/

/* next frame on the outbound stream =/
I* frame expected next =/

/* fetch a packet from the network layer */
/* prepare to send the initial frame */

/* insert sequence number into frame */
[+ piggybacked ack */

f* transmit the frame */

/* start the timer running =/

f* frame_arrival, cksum_err, or timeout */
/* a frame has arrived undamaged. =/

{* goget it «/

/* handle inbound frame stream. */

/* pass packet to network layer +/

/* invert seq number expected next »/

/* handle outbound frame stream. */
M turn the timer off =/

/* fetch new pkt from network layer */
{* invert sender's sequence number */

/* construct outbound frame =/

/* insert sequence number into it */

/* seq number of last received frame +/
/* transmit a frame =/

/* start the timer running =/

Under normal circumstances, one of the two data link layers goes first and transmits the first frame. In other
words, only one of the data link layer programs should contain the to_physical_layer and start_timer procedure
calls outside the main loop. In the event that both data link layers start off simultaneously, a peculiar situation
arises, as discussed later. The starting machine fetches the first packet from its network layer, builds a frame
from it, and sends it. When this (or any) frame arrives, the receiving data link layer checks to see if it is a



duplicate, just as in protocol 3. If the frame is the one expected, it is passed to the network layer and the
receiver's window is slid up.

The acknowledgement field contains the number of the last frame received without error. If this number agrees
with the sequence number of the frame the sender is trying to send, the sender knows it is done with the frame
stored in buffer and can fetch the next packet from its network layer. If the sequence number disagrees, it must
continue trying to send the same frame. Whenever a frame is received, a frame is also sent back.

Now let us examine protocol 4 to see how resilient it is to pathological scenarios. Assume that computer A is
trying to send its frame 0 to computer B and that B is trying to send its frame 0 to A. Suppose that A sends a
frame to B, but A's timeout interval is a little too short. Consequently, A may time out repeatedly, sending a
series of identical frames, all with seq = 0 and ack = 1.

When the first valid frame arrives at computer B, it will be accepted and frame_expected will be set to 1. All the
subsequent frames will be rejected because B is now expecting frames with sequence number 1, not O.
Furthermore, since all the duplicates have ack = 1 and B is still waiting for an acknowledgement of 0, B will not
fetch a new packet from its network layer.

After every rejected duplicate comes in, B sends A a frame containing seq = 0 and ack = 0. Eventually, one of
these arrives correctly at A, causing A to begin sending the next packet. No combination of lost frames or
premature timeouts can cause the protocol to deliver duplicate packets to either network layer, to skip a packet,
or to deadlock.

However, a peculiar situation arises if both sides simultaneously send an initial packet. This synchronization
difficulty is illustrated by Fig. 3-15. In part (a), the normal operation of the protocol is shown. In (b) the peculiarity
is illustrated. If B waits for A's first frame before sending one of its own, the sequence is as shown in (a), and
every frame is accepted. However, if A and B simultaneously initiate communication, their first frames cross, and
the data link layers then get into situation (b). In (a) each frame arrival brings a new packet for the network layer;
there are no duplicates. In (b) half of the frames contain duplicates, even though there are no transmission
errors. Similar situations can occur as a result of premature timeouts, even when one side clearly starts first. In
fact, if multiple premature timeouts occur, frames may be sent three or more times.

Figure 3-15. Two scenarios for protocol 4. (a) Normal case. (b) Abnormal case. The notation is (seq, ack,
packet number). An asterisk indicates where a network layer accepts a packet.
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3.4.2 A Protocol Using Go Back N

Until now we have made the tacit assumption that the transmission time required for a frame to arrive at the
receiver plus the transmission time for the acknowledgement to come back is negligible. Sometimes this
assumption is clearly false. In these situations the long round-trip time can have important implications for the
efficiency of the bandwidth utilization. As an example, consider a 50-kbps satellite channel with a 500-msec



round-trip propagation delay. Let us imagine trying to use protocol 4 to send 1000-bit frames via the satellite. At t
= 0 the sender starts sending the first frame. At t = 20 msec the frame has been completely sent. Not until t =
270 msec has the frame fully arrived at the receiver, and not until t = 520 msec has the acknowledgement
arrived back at the sender, under the best of circumstances (no waiting in the receiver and a short
acknowledgement frame). This means that the sender was blocked during 500/520 or 96 percent of the time. In
other words, only 4 percent of the available bandwidth was used. Clearly, the combination of a long transit time,
high bandwidth, and short frame length is disastrous in terms of efficiency.

The problem described above can be viewed as a consequence of the rule requiring a sender to wait for an
acknowledgement before sending another frame. If we relax that restriction, much better efficiency can be
achieved. Basically, the solution lies in allowing the sender to transmit up to w frames before blocking, instead of
just 1. With an appropriate choice of w the sender will be able to continuously transmit frames for a time equal to
the round-trip transit time without filling up the window. In the example above, w should be at least 26. The
sender begins sending frame 0 as before. By the time it has finished sending 26 frames, at t = 520, the
acknowledgement for frame 0 will have just arrived. Thereafter, acknowledgements arrive every 20 msec, so the
sender always gets permission to continue just when it needs it. At all times, 25 or 26 unacknowledged frames
are outstanding. Put in other terms, the sender's maximum window size is 26.

The need for a large window on the sending side occurs whenever the product of bandwidth x round-trip-delay is
large. If the bandwidth is high, even for a moderate delay, the sender will exhaust its window quickly unless it
has a large window. If the delay is high (e.g., on a geostationary satellite channel), the sender will exhaust its
window even for a moderate bandwidth. The product of these two factors basically tells what the capacity of the
pipe is, and the sender needs the ability to fill it without stopping in order to operate at peak efficiency.

This technique is known as pipelining. If the channel capacity is b bits/sec, the frame size | bits, and the round-
trip propagation time R sec, the time required to transmit a single frame is I/b sec. After the last bit of a data
frame has been sent, there is a delay of R/2 before that bit arrives at the receiver and another delay of at least
R/2 for the acknowledgement to come back, for a total delay of R. In stop-and-wait the line is busy for I/band idle
for R, giving

line utilization = 1/ + bR)

If | < bR, the efficiency will be less than 50 percent. Since there is always a nonzero delay for the
acknowledgement to propagate back, pipelining can, in principle, be used to keep the line busy during this
interval, but if the interval is small, the additional complexity is not worth the trouble.

Pipelining frames over an unreliable communication channel raises some serious issues. First, what happens if a
frame in the middle of a long stream is damaged or lost? Large numbers of succeeding frames will arrive at the
receiver before the sender even finds out that anything is wrong. When a damaged frame arrives at the receiver,
it obviously should be discarded, but what should the receiver do with all the correct frames following it?
Remember that the receiving data link layer is obligated to hand packets to the network layer in sequence. In
Fig. 3-16 we see the effects of pipelining on error recovery. We will now examine it in some detail.

Figure 3-16. Pipelining and error recovery. Effect of an error when (a) receiver's window size is 1 and (b)
receiver's window size is large.
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Two basic approaches are available for dealing with errors in the presence of pipelining. One way, called go
back n, is for the receiver simply to discard all subsequent frames, sending no acknowledgements for the
discarded frames. This strategy corresponds to a receive window of size 1. In other words, the data link layer
refuses to accept any frame except the next one it must give to the network layer. If the sender's window fills up
before the timer runs out, the pipeline will begin to empty. Eventually, the sender will time out and retransmit all
unacknowledged frames in order, starting with the damaged or lost one. This approach can waste a lot of
bandwidth if the error rate is high.

In Fig. 3-16(a) we see go back n for the case in which the receiver's window is large. Frames 0 and 1 are
correctly received and acknowledged. Frame 2, however, is damaged or lost. The sender, unaware of this
problem, continues to send frames until the timer for frame 2 expires. Then it backs up to frame 2 and starts all
over with it, sending 2, 3, 4, etc. all over again.

The other general strategy for handling errors when frames are pipelined is called selective repeat. When it is
used, a bad frame that is received is discarded, but good frames received after it are buffered. When the sender
times out, only the oldest unacknowledged frame is retransmitted. If that frame arrives correctly, the receiver can
deliver to the network layer, in sequence, all the frames it has buffered. Selective repeat is often combined with
having the receiver send a negative acknowledgement (NAK) when it detects an error, for example, when it
receives a checksum error or a frame out of sequence. NAKs stimulate retransmission before the corresponding
timer expires and thus improve performance.

In Fig. 3-16(b), frames 0 and 1 are again correctly received and acknowledged and frame 2 is lost. When frame
3 arrives at the receiver, the data link layer there notices that is has missed a frame, so it sends back a NAK for
2 but buffers 3. When frames 4 and 5 arrive, they, too, are buffered by the data link layer instead of being
passed to the network layer. Eventually, the NAK 2 gets back to the sender, which immediately resends frame 2.
When that arrives, the data link layer now has 2, 3, 4, and 5 and can pass all of them to the network layer in the
correct order. It can also acknowledge all frames up to and including 5, as shown in the figure. If the NAK should
get lost, eventually the sender will time out for frame 2 and send it (and only it) of its own accord, but that may be
a quite a while later. In effect, the NAK speeds up the retransmission of one specific frame.



Selective repeat corresponds to a receiver window larger than 1. Any frame within the window may be accepted
and buffered until all the preceding ones have been passed to the network layer. This approach can require
large amounts of data link layer memory if the window is large.

These two alternative approaches are trade-offs between bandwidth and data link layer buffer space. Depending
on which resource is scarcer, one or the other can be used. Figure 3-17 shows a pipelining protocol in which the
receiving data link layer only accepts frames in order; frames following an error are discarded. In this protocol,
for the first time we have dropped the assumption that the network layer always has an infinite supply of packets
to send. When the network layer has a packet it wants to send, it can cause a network_layer_ready event to
happen. However, to enforce the flow control rule of no more than MAX_SEQ unacknowledged frames
outstanding at any time, the data link layer must be able to keep the network layer from bothering it with more
work. The library procedures enable_network_layer and disable_network layer do this job.

Figure 3-17. A sliding window protocol using go back n.



/= Protocol 5 (go back n) allows multiple oulstanding frames. The sender may transmit up
to MAX_SEQ frames without waiting for an ack. In addition, unlike in the previous
protocols, the network layer is not assumed to have a new packet all the time. Instead,
the netwaork laver causes a network_layer_ready event when there is a packet to send. =/

#define MAX_SEQ 7

/*shouldbe 2 n-1#/

typedef enum {frame_arrival, cksum_err, timeout, network_layer_ready) event_lype;

ftinclude “protocol.h®

static boolean between(seq_nr a, seq_nr b, seg_nr c)

f* Return true if a <=b < ¢ circularly; false otherwise. */
ifllla==b)&& (b<c))ll{{c<a)&&ia=<=D)) Il {ib<c)&&(c<al))

returnitrue);
else
relumn(false);
1

static void send_data(seq_nr frame_nr, seq_nr frame_expected, packet buffer] ])

f* Construct and send a data frame. */

frame s;

s.info = buffer[frame_nr];
s.58q = frame_nr;

!* scratch variable =/

i+ insert packet into frame */
/* insert sequence number into frame */

s.ack = (frame_expected + MAX_SEQ) % (MAX_SEQ + 1),/* piggyback ack +/

to_physical_layer{&s);
start_timer({frame_nr);

}

void protocal5{void)

{
seq_nr next_frame_to_send;
seq.nr ack_expected,
seq_nr frame_expected;
frame r;
packet buffer[MAX_SEQ + 1];
seq_nr nbuffered;
S8Q_Nri;
event_type event;

enable_network_layer();
ack_expectad = 0;
next_frame_to_send = 0;
frame_expected = 0;
nbuffered = 0;

while (true) {
wait_for_event(&event);

switch{event) |

{* transmit the framea =/
/+ start the timer running *+/

i+ MAX_SEQ = 1; used for outbound stream =/
/* oldest frame as yet unacknowledged «/

i* next frame expected on inbound stream */
/* scratch variable #/

{* buffers for the outbound stream =/

{* # output bufiers currently in use */

!+ used to index into the buffer array +/

i* allow network_layer_ready events +/
/* next ack expected inbound */

i+ next frame going out */

i* number of frame expectad inbound #/
!+ initially no packets are buffered =/

/* four possibilities: see event_type above =/

case network_layer_ready: I* the network layer has a packet to send »/
/* Accept, save, and transmit a new frame. */
from_network_layer(&buffer[next_frame_to_send]); /+ fetch new packet =/
nbuffered = nbufferad + 1; /+ expand the sender's window */
send_data(next_frame_to_send, frame_expected, buffer),/* transmit the frame +/
inci{next_frame_to_send); I+ advance sender's upper window edge «/
break;

case frame_arrival:
from_physical_layer(&r);

* a data or control frame has arrived *»/
/* get incoming frame from physical layer */

if (r.seq == frame_expected) |
f* Frames are accepted only in order. */
to_network_layer(&r.infa); /* pass packet to network layer */
inc(frame_expected); f*+ advance lower edge of receivers window */

}

f* Ack nimplies n =1, n =2, etc. Check for this. »/
while (between(ack_expected, rack, next_frame_to_send)) {

Tl Nk i bl Y arme e ol a g o o e 2



Note that a maximum of MAX_SEQ frames and not MAX_SEQ + 1 frames may be outstanding at any instant,
even though there are MAX_SEQ + 1 distinct sequence numbers: 0, 1, 2, ..., MAX_SEQ. To see why this
restriction is required, consider the following scenario with MAX_SEQ = 7.

The sender sends frames 0 through 7.

A piggybacked acknowledgement for frame 7 eventually comes back to the sender.
The sender sends another eight frames, again with sequence numbers 0 through 7.
Now another piggybacked acknowledgement for frame 7 comes in.

PN E

The question is this: Did all eight frames belonging to the second batch arrive successfully, or did all eight get
lost (counting discards following an error as lost)? In both cases the receiver would be sending frame 7 as the
acknowledgement. The sender has no way of telling. For this reason the maximum number of outstanding
frames must be restricted to MAX_SEQ.

Although protocol 5 does not buffer the frames arriving after an error, it does not escape the problem of buffering
altogether. Since a sender may have to retransmit all the unacknowledged frames at a future time, it must hang
on to all transmitted frames until it knows for sure that they have been accepted by the receiver. When an
acknowledgement comes in for frame n, frames n - 1, n - 2, and so on are also automatically acknowledged.
This property is especially important when some of the previous acknowledgement-bearing frames were lost or
garbled. Whenever any acknowledgement comes in, the data link layer checks to see if any buffers can now be
released. If buffers can be released (i.e., there is some room available in the window), a previously blocked
network layer can now be allowed to cause more network_layer_ready events.

For this protocol, we assume that there is always reverse traffic on which to piggyback acknowledgements. If
there is not, no acknowledgements can be sent. Protocol 4 does not need this assumption since it sends back
one frame every time it receives a frame, even if it has just already sent that frame. In the next protocol we will
solve the problem of one-way traffic in an elegant way.

Because protocol 5 has multiple outstanding frames, it logically needs multiple timers, one per outstanding
frame. Each frame times out independently of all the other ones. All of these timers can easily be simulated in
software, using a single hardware clock that causes interrupts periodically. The pending timeouts form a linked
list, with each node of the list telling the number of clock ticks until the timer expires, the frame being timed, and
a pointer to the next node.

As an illustration of how the timers could be implemented, consider the example of Fig. 3-18(a). Assume that the
clock ticks once every 100 msec. Initially, the real time is 10:00:00.0; three timeouts are pending, at 10:00:00.5,
10:00:01.3, and 10:00:01.9. Every time the hardware clock ticks, the real time is updated and the tick counter at
the head of the list is decremented. When the tick counter becomes zero, a timeout is caused and the node is
removed from the list, as shown in Fig. 3-18(b). Although this organization requires the list to be scanned when
start_timer or stop_timer is called, it does not require much work per tick. In protocol 5, both of these routines
have been given a parameter, indicating which frame is to be timed.

Figure 3-18. Simulation of multiple timers in software.
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3.4.3 A Protocol Using Selective Repeat

Protocol 5 works well if errors are rare, but if the line is poor, it wastes a lot of bandwidth on retransmitted
frames. An alternative strategy for handling errors is to allow the receiver to accept and buffer the frames
following a damaged or lost one. Such a protocol does not discard frames merely because an earlier frame was
damaged or lost.

In this protocol, both sender and receiver maintain a window of acceptable sequence numbers. The sender's
window size starts out at 0 and grows to some predefined maximum, MAX_SEQ. The receiver's window, in
contrast, is always fixed in size and equal to MAX_SEQ. The receiver has a buffer reserved for each sequence
number within its fixed window. Associated with each buffer is a bit (arrived) telling whether the buffer is full or
empty. Whenever a frame arrives, its sequence number is checked by the function between to see if it falls
within the window. If so and if it has not already been received, it is accepted and stored. This action is taken
without regard to whether or not it contains the next packet expected by the network layer. Of course, it must be
kept within the data link layer and not passed to the network layer until all the lower-numbered frames have
already been delivered to the network layer in the correct order. A protocol using this algorithm is given in Fig. 3-
19.

Figure 3-19. A sliding window protocol using selective repeat.



/= Protocol B (selective repeat) accepts frames out of order but passes packels to the
network layer in order. Associated with each outstanding frame is a timer. When the timer
expires, only that frame is retransmitied, not all the outstanding frames, as in protocol 5. =/

idefine MAX_SEQ T
#define NR_BUFS (IMAX_SEQ + 1)/2)

f*shouldbe 2'n—- 1+

typedef enum (frame_arrival, cksum_arr, timeout, network_layer_ready, ack_timeout) event_type;

#include "profocol k"
boolean no_nak = true;
saq. nr oldest frame = MAX SEQ + 1;

f* no nak has been senl yat «/
i+ initial value is only for the simulator +/

static boolean between({seq nr a, seq nrb, seq nrc)

{

f+ Same as between in protocels, but shorter and more obscure. +/
retumn ((@<=b) && (b <)) Il {ic < a) && (a <=b)) Il ((b < c) && (c < &));

static void send_frame(frame_kind fk, seq_nr frame_nr, seq_nr frame_expacted, packet buffer] ])

{
/= Construct and send a data, ack, or nak frame, =/

frame s;

s kind = fk;

f* seratch vanable =/

i* kind == data, ack, or nak =/

if {fk == data) s.info = buffer{frame nr % MR _BUFS];

5.82q = frame_nr;

I+ only meaningful for data framas +/

g.ack = (frame_expected + MAX_SEQ) % (MAX _SEQ + 1);

if [tk == nak) no_nak = false;
to physical layer(&s);

/* ane nak per frame, please =/
{f* transmit the frame »/

if {fk == data) start_timer{frame_nr % NR_BUFS);

slop ack_timer():
]

void protocolB(void)

{

saq nr ack _expected;
seq.nr next_frame to_send;
seq.nr frame_expected;
saq_nr too_far,

inti;

frame r;

packet out buf[NR_BUFS];
packet in_buf[MR_BUFS];
boolean arrived[MR_BUFS];
saq_nr nbuffered;
event_type event;

enable natwork layer();
ack expected =0;
next frame to send = 0;
frame_expected = 0;
too_far = NR_BUFS;
nbutfered = 0;
far (i = 0; | = NR_BUFS; i++) arfved|i] = false;
while (true) {
wait_for_event(&evant);
switch{avant) {
case network_layer_ready:
nbuffered = nbutfered + 1;

/* no noad for separate ack frame =/

* lower edge of sender's window =/

i+ upper edge of sender's window + 1 =/

* lower edge of receiver's window */

f* upper edge of recaiver's window + 1 =/

f* index into butter pool «f

f* seratch variable =/

i buffers for the outbound stream «f

i+ bufers for the inbound stream =/

f* inbound bit map =/

f* how many output butfers currently used «/

* initialize =/
i+ mext ack expeacted on the inbound straam +/
f* number of next outgoing frame =/

i+ inttially no packets are buffered «/

f* live possibilities: see evant_type above »/

i+ accept, save, and transmit a new frame =/
i* expand the window =/

from_network_layen&out_buf[next frame _to send % NR_BUFS)); /* fetch new packet «/

send_frameidata, next frame to send, frame_expected, out_buf)y transmit the frame «/

inc{next frame to send);
broak;

case frame_arrival:
from_physical layer{&r);
if (r.kind == data) {

f* advance upper window edge +/

/* & data or control frame has arrived */
i+ felch incoming frame from physical layer =/

/= an undamaged frame has arrived. «/
if {(r.seq != frame_expected)} && no_nak)
send_frame{nak, 0. frame_expected, out_buf); else start_ack_timer();
if {between{frame_expectad r.seqtoo_far) && (amved(r.saq?%NR_BUFS])==false)) {
/* Frames may be accepted in any order. =/

arrived[r.seq % NR_BUFS] = trua:
in_buflr.seq % MA. BLUFS] = r.info;

/= mark buffer as full =f
/* insen data into buffar «f

while {armived[frame expected % NR_BUFS]) {
/* Pass frames and advance window. =/
to_netwaork_layer(&in_bulframe_expected % NR_BUFS));

no_nak = frue;

arrived[frame_expected % MR _BUFS] = false;

inciframa. expected);

M+ advance lower edge of recaiver's window =/



Nonsequential receive introduces certain problems not present in protocols in which frames are only accepted in
order. We can illustrate the trouble most easily with an example. Suppose that we have a 3-bit sequence
number, so that the sender is permitted to transmit up to seven frames before being required to wait for an
acknowledgement. Initially, the sender's and receiver's windows are as shown in Fig. 3-20(a). The sender now
transmits frames 0 through 6. The receiver's window allows it to accept any frame with sequence number
between 0 and 6 inclusive. All seven frames arrive correctly, so the receiver acknowledges them and advances
its window to allow receipt of 7, 0, 1, 2, 3, 4, or 5, as shown in Fig. 3-20(b). All seven buffers are marked empty.

Figure 3-20. (a) Initial situation with a window of size seven. (b) After seven frames have been sent and
received but not acknowledged. (c) Initial situation with a window size of four. (d) After four frames have
been sent and received but not acknowledged.

Sender 0123d56|T |U12‘3456|? 01234567 |012345867

Recaiver |0 12 3 45 6|7 |0123456E 01234567 01234567

(a) (b} ic) (d)

It is at this point that disaster strikes in the form of a lightning bolt hitting the telephone pole and wiping out all the
acknowledgements. The sender eventually times out and retransmits frame 0. When this frame arrives at the
receiver, a check is made to see if it falls within the receiver's window. Unfortunately, in Fig. 3-20(b) frame 0 is
within the new window, so it will be accepted. The receiver sends a piggybacked acknowledgement for frame 6,
since 0 through 6 have been received.

The sender is happy to learn that all its transmitted frames did actually arrive correctly, so it advances its window
and immediately sends frames 7, 0, 1, 2, 3, 4, and 5. Frame 7 will be accepted by the receiver and its packet will
be passed directly to the network layer. Immediately thereafter, the receiving data link layer checks to see if it
has a valid frame 0 already, discovers that it does, and passes the embedded packet to the network layer.
Consequently, the network layer gets an incorrect packet, and the protocol fails.

The essence of the problem is that after the receiver advanced its window, the new range of valid sequence
numbers overlapped the old one. Consequently, the following batch of frames might be either duplicates (if all
the acknowledgements were lost) or new ones (if all the acknowledgements were received). The poor receiver
has no way of distinguishing these two cases.

The way out of this dilemma lies in making sure that after the receiver has advanced its window, there is no
overlap with the original window. To ensure that there is no overlap, the maximum window size should be at
most half the range of the sequence numbers, as is done in Fig. 3-20(c) and Fig. 3-20(d). For example, if 4 bits
are used for sequence numbers, these will range from 0 to 15. Only eight unacknowledged frames should be
outstanding at any instant. That way, if the receiver has just accepted frames 0 through 7 and advanced its
window to permit acceptance of frames 8 through 15, it can unambiguously tell if subsequent frames are
retransmissions (0 through 7) or new ones (8 through 15). In general, the window size for protocol 6 will be
(MAX_SEQ + 1)/2. Thus, for 3-bit sequence numbers, the window size is four.

An interesting question is: How many buffers must the receiver have? Under no conditions will it ever accept
frames whose sequence numbers are below the lower edge of the window or frames whose sequence numbers
are above the upper edge of the window. Consequently, the number of buffers needed is equal to the window
size, not to the range of sequence numbers. In the above example of a 4-bit sequence number, eight buffers,
numbered 0 through 7, are needed. When frame i arrives, it is put in buffer i mod 8. Notice that although i and (i
+ 8) mod 8 are "competing"” for the same buffer, they are never within the window at the same time, because
that would imply a window size of at least 9.



For the same reason, the number of timers needed is equal to the number of buffers, not to the size of the
sequence space. Effectively, a timer is associated with each buffer. When the timer runs out, the contents of the
buffer are retransmitted.

In protocol 5, there is an implicit assumption that the channel is heavily loaded. When a frame arrives, no
acknowledgement is sent immediately. Instead, the acknowledgement is piggybacked onto the next outgoing
data frame. If the reverse traffic is light, the acknowledgement will be held up for a long period of time. If there is
a lot of traffic in one direction and no traffic in the other direction, only MAX_SEQ packets are sent, and then the
protocol blocks, which is why we had to assume there was always some reverse traffic.

In protocol 6 this problem is fixed. After an in-sequence data frame arrives, an auxiliary timer is started by
start_ack_timer. If no reverse traffic has presented itself before this timer expires, a separate acknowledgement
frame is sent. An interrupt due to the auxiliary timer is called an ack_timeout event. With this arrangement, one-
directional traffic flow is now possible because the lack of reverse data frames onto which acknowledgements
can be piggybacked is no longer an obstacle. Only one auxiliary timer exists, and if start_ack_timer is called
while the timer is running, it is reset to a full acknowledgement timeout interval.

It is essential that the timeout associated with the auxiliary timer be appreciably shorter than the timer used for
timing out data frames. This condition is required to make sure a correctly received frame is acknowledged early
enough that the frame's retransmission timer does not expire and retransmit the frame.

Protocol 6 uses a more efficient strategy than protocol 5 for dealing with errors. Whenever the receiver has
reason to suspect that an error has occurred, it sends a negative acknowledgement (NAK) frame back to the
sender. Such a frame is a request for retransmission of the frame specified in the NAK. There are two cases
when the receiver should be suspicious: a damaged frame has arrived or a frame other than the expected one
arrived (potential lost frame). To avoid making multiple requests for retransmission of the same lost frame, the
receiver should keep track of whether a NAK has already been sent for a given frame. The variable no_nak in
protocol 6 is true if no NAK has been sent yet for frame_expected. If the NAK gets mangled or lost, no real harm
is done, since the sender will eventually time out and retransmit the missing frame anyway. If the wrong frame
arrives after a NAK has been sent and lost, no_nak will be true and the auxiliary timer will be started. When it
expires, an ACK will be sent to resynchronize the sender to the receiver's current status.

In some situations, the time required for a frame to propagate to the destination, be processed there, and have
the acknowledgement come back is (nearly) constant. In these situations, the sender can adjust its timer to be
just slightly larger than the normal time interval expected between sending a frame and receiving its
acknowledgement. However, if this time is highly variable, the sender is faced with the choice of either setting
the interval to a small value (and risking unnecessary retransmissions), or setting it to a large value (and going
idle for a long period after an error).

Both choices waste bandwidth. If the reverse traffic is sporadic, the time before acknowledgement will be
irregular, being shorter when there is reverse traffic and longer when there is not. Variable processing time within
the receiver can also be a problem here. In general, whenever the standard deviation of the acknowledgement
interval is small compared to the interval itself, the timer can be set "tight" and NAKs are not useful. Otherwise
the timer must be set "loose," to avoid unnecessary retransmissions, but NAKs can appreciably speed up
retransmission of lost or damaged frames.

Closely related to the matter of timeouts and NAKSs is the question of determining which frame caused a timeout.
In protocol 5, it is always ack _expected, because it is always the oldest. In protocol 6, there is no trivial way to
determine who timed out. Suppose that frames O through 4 have been transmitted, meaning that the list of
outstanding frames is 01234, in order from oldest to youngest. Now imagine that 0 times out, 5 (a new frame) is
transmitted, 1 times out, 2 times out, and 6 (another new frame) is transmitted. At this point the list of
outstanding frames is 3405126, from oldest to youngest. If all inbound traffic (i.e., acknowledgement-bearing
frames) is lost for a while, the seven outstanding frames will time out in that order.

To keep the example from getting even more complicated than it already is, we have not shown the timer
administration. Instead, we just assume that the variable oldest _frame is set upon timeout to indicate which
frame timed out.



3.5 Protocol Verification

Realistic protocols and the programs that implement them are often quite complicated. Consequently, much
research has been done trying to find formal, mathematical techniques for specifying and verifying protocols. In
the following sections we will look at some models and techniques. Although we are looking at them in the
context of the data link layer, they are also applicable to other layers.

3.5.1 Finite State Machine Models

A key concept used in many protocol models is the finite state machine. With this technique, each protocol
machine (i.e., sender or receiver) is always in a specific state at every instant of time. Its state consists of all the
values of its variables, including the program counter.

In most cases, a large number of states can be grouped for purposes of analysis. For example, considering the
receiver in protocol 3, we could abstract out from all the possible states two important ones: waiting for frame 0
or waiting for frame 1. All other states can be thought of as transient, just steps on the way to one of the main
states. Typically, the states are chosen to be those instants that the protocol machine is waiting for the next
event to happen [i.e., executing the procedure call wait(event) in our examples]. At this point the state of the
protocol machine is completely determined by the states of its variables. The number of states is then 2", where
n is the number of bits needed to represent all the variables combined.

The state of the complete system is the combination of all the states of the two protocol machines and the
channel. The state of the channel is determined by its contents. Using protocol 3 again as an example, the
channel has four possible states: a 0 frame or a 1 frame moving from sender to receiver, an acknowledgement
frame going the other way, or an empty channel. If we model the sender and receiver as each having two states,
the complete system has 16 distinct states.

A word about the channel state is in order. The concept of a frame being "on the channel" is an abstraction, of
course. What we really mean is that a frame has possibly been received, but not yet processed at the
destination. A frame remains "on the channel” until the protocol machine executes FromPhysicalLayer and
processes it.

From each state, there are zero or more possible transitions to other states. Transitions occur when some event
happens. For a protocol machine, a transition might occur when a frame is sent, when a frame arrives, when a
timer expires, when an interrupt occurs, etc. For the channel, typical events are insertion of a new frame onto the
channel by a protocol machine, delivery of a frame to a protocol machine, or loss of a frame due to noise. Given
a complete description of the protocol machines and the channel characteristics, it is possible to draw a directed
graph showing all the states as nodes and all the transitions as directed arcs.

One particular state is designated as the initial state. This state corresponds to the description of the system
when it starts running, or at some convenient starting place shortly thereafter. From the initial state, some,
perhaps all, of the other states can be reached by a sequence of transitions. Using well-known techniques from
graph theory (e.g., computing the transitive closure of a graph), it is possible to determine which states are
reachable and which are not. This technique is called reachability analysis (Lin et al., 1987). This analysis can
be helpful in determining whether a protocol is correct.

Formally, a finite state machine model of a protocol can be regarded as a quadruple (S, M, I, T), where:
S is the set of states the processes and channel can be in.

M is the set of frames that can be exchanged over the channel.

| is the set of initial states of the processes.

T is the set of transitions between states.



At the beginning of time, all processes are in their initial states. Then events begin to happen, such as frames
becoming available for transmission or timers going off. Each event may cause one of the processes or the
channel to take an action and switch to a new state. By carefully enumerating each possible successor to each
state, one can build the reachability graph and analyze the protocol.

Reachability analysis can be used to detect a variety of errors in the protocol specification. For example, if it is
possible for a certain frame to occur in a certain state and the finite state machine does not say what action
should be taken, the specification is in error (incompleteness). If there exists a set of states from which no exit
can be made and from which no progress can be made (i.e., no correct frames can be received any more), we
have another error (deadlock). A less serious error is protocol specification that tells how to handle an event in a
state in which the event cannot occur (extraneous transition). Other errors can also be detected.

As an example of a finite state machine model, consider Fig. 3-21(a). This graph corresponds to protocol 3 as
described above: each protocol machine has two states and the channel has four states. A total of 16 states
exist, not all of them reachable from the initial one. The unreachable ones are not shown in the figure.
Checksum errors are also ignored here for simplicity.

Figure 3-21. (a) State diagram for protocol 3. (b) Transitions.
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Each state is labeled by three characters, SRC, where S is 0 or 1, corresponding to the frame the sender is
trying to send; R is also 0 or 1, corresponding to the frame the receiver expects, and C is 0, 1, A, or empty (-),
corresponding to the state of the channel. In this example the initial state has been chosen as (000). In other
words, the sender has just sent frame 0, the receiver expects frame 0, and frame 0 is currently on the channel.

Nine kinds of transitions are shown in Fig. 3-21. Transition O consists of the channel losing its contents.
Transition 1 consists of the channel correctly delivering packet 0 to the receiver, with the receiver then changing
its state to expect frame 1 and emitting an acknowledgement. Transition 1 also corresponds to the receiver
delivering packet 0 to the network layer. The other transitions are listed in Fig. 3-21(b). The arrival of a frame
with a checksum error has not been shown because it does not change the state (in protocol 3).

During normal operation, transitions 1, 2, 3, and 4 are repeated in order over and over. In each cycle, two
packets are delivered, bringing the sender back to the initial state of trying to send a new frame with sequence
number 0. If the channel loses frame 0, it makes a transition from state (000) to state (00-). Eventually, the
sender times out (transition 7) and the system moves back to (000). The loss of an acknowledgement is more
complicated, requiring two transitions, 7 and 5, or 8 and 6, to repair the damage.

One of the properties that a protocol with a 1-bit sequence number must have is that no matter what sequence
of events happens, the receiver never delivers two odd packets without an intervening even packet, and vice
versa. From the graph of Fig. 3-21 we see that this requirement can be stated more formally as "there must not
exist any paths from the initial state on which two occurrences of transition 1 occur without an occurrence of
transition 3 between them, or vice versa." From the figure it can be seen that the protocol is correct in this
respect.



A similar requirement is that there not exist any paths on which the sender changes state twice (e.g., from 0 to 1
and back to 0) while the receiver state remains constant. Were such a path to exist, then in the corresponding
sequence of events, two frames would be irretrievably lost without the receiver noticing. The packet sequence
delivered would have an undetected gap of two packets in it.

Yet another important property of a protocol is the absence of deadlocks. A deadlock is a situation in which the
protocol can make no more forward progress (i.e., deliver packets to the network layer) no matter what
sequence of events happens. In terms of the graph model, a deadlock is characterized by the existence of a
subset of states that is reachable from the initial state and that has two properties:

1. There is no transition out of the subset.
2. There are no transitions in the subset that cause forward progress.

Once in the deadlock situation, the protocol remains there forever. Again, it is easy to see from the graph that
protocol 3 does not suffer from deadlocks.

3.5.2 Petri Net Models

The finite state machine is not the only technique for formally specifying protocols. In this section we will
describe a completely different technique, the Petri net (Danthine, 1980). A Petri net has four basic elements:
places, transitions, arcs, and tokens. A place represents a state which (part of) the system may be in. Figure 3-
22 shows a Petri net with two places, A and B, both shown as circles. The system is currently in state A,
indicated by the token (heavy dot) in place A. A transition is indicated by a horizontal or vertical bar. Each
transition has zero or more input arcs coming from its input places, and zero or more output arcs, going to its
output places.

Figure 3-22. A Petri net with two places and two transitions.

O O
(. L/ o/ ’_>
A i B el

A transition is enabled if there is at least one input token in each of its input places. Any enabled transition may
fire at will, removing one token from each input place and depositing a token in each output place. If the number
of input arcs and output arcs differs, tokens will not be conserved. If two or more transitions are enabled, any
one of them may fire. The choice of a transition to fire is indeterminate, which is why Petri nets are useful for
modeling protocols. The Petri net of Fig. 3-22 is deterministic and can be used to model any two-phase process
(e.g., the behavior of a baby: eat, sleep, eat, sleep, and so on). As with all modeling tools, unnecessary detail is
suppressed.

Figure 3-23 gives the Petri net model of Fig. 3-12. Unlike the finite state machine model, there are no composite
states here; the sender's state, channel state, and receiver's state are represented separately. Transitions 1 and
2 correspond to transmission of frame 0 by the sender, normally, and on a timeout respectively. Transitions 3
and 4 are analogous for frame 1. Transitions 5, 6, and 7 correspond to the loss of frame 0, an
acknowledgement, and frame 1, respectively. Transitions 8 and 9 occur when a data frame with the wrong
sequence number arrives at the receiver. Transitions 10 and 11 represent the arrival at the receiver of the next
frame in sequence and its delivery to the network layer.

Figure 3-23. A Petri net model for protocol 3.
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Petri nets can be used to detect protocol failures in a way similar to the use of finite state machines. For
example, if some firing sequence included transition 10 twice without transition 11 intervening, the protocol
would be incorrect. The concept of a deadlock in a Petri net is similar to its finite state machine counterpart.

Petri nets can be represented in convenient algebraic form resembling a grammar. Each transition contributes
one rule to the grammar. Each rule specifies the input and output places of the transition. Since Fig. 3-23 has 11
transitions, its grammar has 11 rules, numbered 1-11, each one corresponding to the transition with the same
number. The grammar for the Petri net of Fig. 3-23 is as follows:

1: BD ==+ AC
2: A =3 A

3: AD = BE
4:B =B

5: C =
6
7
8
9

It is interesting to note how we have managed to reduce a complex protocol to 11 simple grammar rules that can
easily be manipulated by a computer program.

The current state of the Petri net is represented as an unordered collection of places, each place represented in
the collection as many times as it has tokens. Any rule, all of whose left-hand side places are present can be
fired, removing those places from the current state, and adding its output places to the current state. The
marking of Fig. 3-23 is ACG, (i.e., A, C, and G each have one token). Consequently, rules 2, 5, and 10 are all
enabled and any of them can be applied, leading to a new state (possibly with the same marking as the original
one). In contrast, rule 3 ( AD =*BE ) cannot be applied because D is not marked.



3.6 Example Data Link Protocols

In the following sections we will examine several widely-used data link protocols. The first one, HDLC, is a
classical bit-oriented protocol whose variants have been in use for decades in many applications. The second
one, PPP, is the data link protocol used to connect home computers to the Internet.

3.6.1 HDLC—High-Level Data Link Control

In this section we will examine a group of closely related protocols that are a bit old but are still heavily used.
They are all derived from the data link protocol first used in the IBM mainframe world: SDLC (Synchronous Data
Link Control) protocol. After developing SDLC, IBM submitted it to ANSI and ISO for acceptance as U.S. and
international standards, respectively. ANSI modified it to become ADCCP (Advanced Data Communication
Control Procedure), and ISO modified it to become HDLC (High-level Data Link Control). CCITT then adopted
and modified HDLC for its LAP (Link Access Procedure) as part of the X.25 network interface standard but later
modified it again to LAPB, to make it more compatible with a later version of HDLC. The nice thing about
standards is that you have so many to choose from. Furthermore, if you do not like any of them, you can just
wait for next year's model.

These protocols are based on the same principles. All are bit oriented, and all use bit stuffing for data
transparency. They differ only in minor, but nevertheless irritating, ways. The discussion of bit-oriented protocols
that follows is intended as a general introduction. For the specific details of any one protocol, please consult the
appropriate definition.

All the bit-oriented protocols use the frame structure shown in Fig. 3-24. The Address field is primarily of
importance on lines with multiple terminals, where it is used to identify one of the terminals. For point-to-point
lines, it is sometimes used to distinguish commands from responses.

Figure 3-24. Frame format for bit-oriented protocols.
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01111110 | Address | Control | Data | Checksum | 01111110

The Control field is used for sequence numbers, acknowledgements, and other purposes, as discussed below.

The Data field may contain any information. It may be arbitrarily long, although the efficiency of the checksum
falls off with increasing frame length due to the greater probability of multiple burst errors.

The Checksum field is a cyclic redundancy code using the technique we examined in Sec. 3-2.2.

The frame is delimited with another flag sequence (01111110). On idle point-to-point lines, flag sequences are
transmitted continuously. The minimum frame contains three fields and totals 32 bits, excluding the flags on
either end.

There are three kinds of frames: Information, Supervisory, and Unnumbered. The contents of the Control field for
these three kinds are shown in Fig. 3-25. The protocol uses a sliding window, with a 3-bit sequence number. Up
to seven unacknowledged frames may be outstanding at any instant. The Seq field in Fig. 3-25(a) is the frame
sequence number. The Next field is a piggybacked acknowledgement. However, all the protocols adhere to the
convention that instead of piggybacking the number of the last frame received correctly, they use the number of
the first frame not yet received (i.e., the next frame expected). The choice of using the last frame received or the
next frame expected is arbitrary; it does not matter which convention is used, provided that it is used
consistently.

Figure 3-25. Control field of (a) an information frame, (b) a supervisory frame, (c) an unnumbered frame.
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The P/F bit stands for Poll/Final. It is used when a computer (or concentrator) is polling a group of terminals.
When used as P, the computer is inviting the terminal to send data. All the frames sent by the terminal, except
the final one, have the P/F bit set to P. The final one is set to F.

In some of the protocols, the P/F bit is used to force the other machine to send a Supervisory frame immediately
rather than waiting for reverse traffic onto which to piggyback the window information. The bit also has some
minor uses in connection with the Unnumbered frames.

The various kinds of Supervisory frames are distinguished by the Type field. Type 0 is an acknowledgement
frame (officially called RECEIVE READY) used to indicate the next frame expected. This frame is used when
there is no reverse traffic to use for piggybacking.

Type 1 is a negative acknowledgement frame (officially called REJECT). It is used to indicate that a transmission
error has been detected. The Next field indicates the first frame in sequence not received correctly (i.e., the
frame to be retransmitted). The sender is required to retransmit all outstanding frames starting at Next. This
strategy is similar to our protocol 5 rather than our protocol 6.

Type 2 is RECEIVE NOT READY. It acknowledges all frames up to but not including Next, just as RECEIVE
READY does, but it tells the sender to stop sending. RECEIVE NOT READY s intended to signal certain
temporary problems with the receiver, such as a shortage of buffers, and not as an alternative to the sliding
window flow control. When the condition has been repaired, the receiver sends a RECEIVE READY, REJECT,
or certain control frames.

Type 3 is the SELECTIVE REJECT. It calls for retransmission of only the frame specified. In this sense it is like
our protocol 6 rather than 5 and is therefore most useful when the sender's window size is half the sequence
space size, or less. Thus, if a receiver wishes to buffer out-of-sequence frames for potential future use, it can
force the retransmission of any specific frame using Selective Reject. HDLC and ADCCP allow this frame type,
but SDLC and LAPB do not allow it (i.e., there is no Selective Reject), and type 3 frames are undefined.

The third class of frame is the Unnumbered frame. It is sometimes used for control purposes but can also carry
data when unreliable connectionless service is called for. The various bit-oriented protocols differ considerably
here, in contrast with the other two kinds, where they are nearly identical. Five bits are available to indicate the
frame type, but not all 32 possibilities are used.

All the protocols provide a command, DISC (DISConnect), that allows a machine to announce that it is going
down (e.g., for preventive maintenance). They also have a command that allows a machine that has just come
back on-line to announce its presence and force all the sequence numbers back to zero. This command is called
SNRM (Set Normal Response Mode). Unfortunately, "Normal Response Mode" is anything but normal. It is an
unbalanced (i.e., asymmetric) mode in which one end of the line is the master and the other the slave. SNRM
dates from a time when data communication meant a dumb terminal talking to a big host computer, which clearly
is asymmetric. To make the protocol more suitable when the two partners are equals, HDLC and LAPB have an
additional command, SABM (Set Asynchronous Balanced Mode), which resets the line and declares both parties
to be equals. They also have commands SABME and SNRME, which are the same as SABM and SNRM,
respectively, except that they enable an extended frame format that uses 7-bit sequence numbers instead of 3-
bit sequence numbers.

A third command provided by all the protocols is FRMR (FRaMe Reject), used to indicate that a frame with a
correct checksum but impossible semantics arrived. Examples of impossible semantics are a type 3 Supervisory



frame in LAPB, a frame shorter than 32 bits, an illegal control frame, and an acknowledgement of a frame that
was outside the window, etc. FRMR frames contain a 24-bit data field telling what was wrong with the frame. The
data include the control field of the bad frame, the window parameters, and a collection of bits used to signal
specific errors.

Control frames can be lost or damaged, just like data frames, so they must be acknowledged too. A special
control frame, called UA (Unnumbered Acknowledgement), is provided for this purpose. Since only one control
frame may be outstanding, there is never any ambiguity about which control frame is being acknowledged.

The remaining control frames deal with initialization, polling, and status reporting. There is also a control frame
that may contain arbitrary information, Ul (Unnumbered Information). These data are not passed to the network
layer but are for the receiving data link layer itself.

Despite its widespread use, HDLC is far from perfect. A discussion of a variety of problems associated with it
can be found in (Fiorini et al., 1994).

3.6.2 The Data Link Layer in the Internet

The Internet consists of individual machines (hosts and routers) and the communication infrastructure that
connects them. Within a single building, LANs are widely used for interconnection, but most of the wide area
infrastructure is built up from point-to-point leased lines. In Chap. 4, we will look at LANs; here we will examine
the data link protocols used on point-to-point lines in the Internet.

In practice, point-to-point communication is primarily used in two situations. First, thousands of organizations
have one or more LANs, each with some number of hosts (personal computers, user workstations, servers, and
so on) along with a router (or a bridge, which is functionally similar). Often, the routers are interconnected by a
backbone LAN. Typically, all connections to the outside world go through one or two routers that have point-to-
point leased lines to distant routers. It is these routers and their leased lines that make up the communication
subnets on which the Internet is built.

The second situation in which point-to-point lines play a major role in the Internet is the millions of individuals
who have home connections to the Internet using modems and dial-up telephone lines. Usually, what happens is
that the user's home PC calls up an Internet service provider's router and then acts like a full-blown Internet host.
This method of operation is no different from having a leased line between the PC and the router, except that the
connection is terminated when the user ends the session. A home PC calling an Internet service provider is
illustrated in Fig. 3-26. The modem is shown external to the computer to emphasize its role, but modern
computers have internal modems.

Figure 3-26. A home personal computer acting as an Internet host.

User's home Internal provider's olfice
e T T e e ;
|PC i | Modems
i i [ —_—— |
i . Client process E g —— . !
: == using TCP/IP ! b = i
| i Dial-up LI .‘.j-[: | mm i
| @ | telephone line | i
! — R — i
| == e S I s s i
! || mmm——— Y Y i
! / : = ;
! i
i i
! i
! i
i i

i / s \
1 TCP/P connection - \
i using PFP _— ,‘-_—[:'

] T SR
: —

For both the router-router leased line connection and the dial-up host-router connection, some point-to-point
data link protocol is required on the line for framing, error control, and the other data link layer functions we have
studied in this chapter. The one used in the Internet is called PPP. We will now examine it.



PPP—The Point-to-Point Protocol

The Internet needs a point-to-point protocol for a variety of purposes, including router-to-router traffic and home
user-to-ISP traffic. This protocol is PPP (Point-to-Point Protocol), which is defined in RFC 1661 and further
elaborated on in several other RFCs (e.g., RFCs 1662 and 1663). PPP handles error detection, supports
multiple protocols, allows IP addresses to be negotiated at connection time, permits authentication, and has
many other features.

PPP provides three features:

1. A framing method that unambiguously delineates the end of one frame and the start of the next one. The
frame format also handles error detection.

2. Alink control protocol for bringing lines up, testing them, negotiating options, and bringing them down
again gracefully when they are no longer needed. This protocol is called LCP (Link Control Protocol). It
supports synchronous and asynchronous circuits and byte-oriented and bit-oriented encodings.

3. A way to negotiate network-layer options in a way that is independent of the network layer protocol to be
used. The method chosen is to have a different NCP (Network Control Protocol) for each network layer
supported.

To see how these pieces fit together, let us consider the typical scenario of a home user calling up an Internet
service provider to make a home PC a temporary Internet host. The PC first calls the provider's router via a
modem. After the router's modem has answered the phone and established a physical connection, the PC sends
the router a series of LCP packets in the payload field of one or more PPP frames. These packets and their
responses select the PPP parameters to be used.

Once the parameters have been agreed upon, a series of NCP packets are sent to configure the network layer.
Typically, the PC wants to run a TCP/IP protocol stack, so it needs an IP address. There are not enough IP
addresses to go around, so normally each Internet provider gets a block of them and then dynamically assigns
one to each newly attached PC for the duration of its login session. If a provider owns n IP addresses, it can
have up to n machines logged in simultaneously, but its total customer base may be many times that. The NCP
for IP assigns the IP address.

At this point, the PC is how an Internet host and can send and receive IP packets, just as hardwired hosts can.
When the user is finished, NCP tears down the network layer connection and frees up the IP address. Then LCP
shuts down the data link layer connection. Finally, the computer tells the modem to hang up the phone, releasing
the physical layer connection.

The PPP frame format was chosen to closely resemble the HDLC frame format, since there was no reason to
reinvent the wheel. The major difference between PPP and HDLC is that PPP is character oriented rather than
bit oriented. In particular, PPP uses byte stuffing on dial-up modem lines, so all frames are an integral number of
bytes. It is not possible to send a frame consisting of 30.25 bytes, as it is with HDLC. Not only can PPP frames
be sent over dial-up telephone lines, but they can also be sent over SONET or true bit-oriented HDLC lines (e.qg.,
for router-router connections). The PPP frame format is shown in Fig. 3-27.

Figure 3-27. The PPP full frame format for unnumbered mode operation.
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All PPP frames begin with the standard HDLC flag byte (01111110), which is byte stuffed if it occurs within the
payload field. Next comes the Address field, which is always set to the binary value 11111111 to indicate that all
stations are to accept the frame. Using this value avoids the issue of having to assign data link addresses.

The Address field is followed by the Control field, the default value of which is 00000011. This value indicates an
unnumbered frame. In other words, PPP does not provide reliable transmission using sequence numbers and



acknowledgements as the default. In noisy environments, such as wireless networks, reliable transmission using
numbered mode can be used. The exact details are defined in RFC 1663, but in practice it is rarely used.

Since the Address and Control fields are always constant in the default configuration, LCP provides the
necessary mechanism for the two parties to negotiate an option to just omit them altogether and save 2 bytes
per frame.

The fourth PPP field is the Protocol field. Its job is to tell what kind of packet is in the Payload field. Codes are
defined for LCP, NCP, IP, IPX, AppleTalk, and other protocols. Protocols starting with a 0 bit are network layer
protocols such as IP, IPX, OSI CLNP, XNS. Those starting with a 1 bit are used to negotiate other protocols.
These include LCP and a different NCP for each network layer protocol supported. The default size of the
Protocol field is 2 bytes, but it can be negotiated down to 1 byte using LCP.

The Payload field is variable length, up to some negotiated maximum. If the length is not negotiated using LCP
during line setup, a default length of 1500 bytes is used. Padding may follow the payload if need be.

After the Payload field comes the Checksum field, which is normally 2 bytes, but a 4-byte checksum can be
negotiated.

In summary, PPP is a multiprotocol framing mechanism suitable for use over modems, HDLC bit-serial lines,
SONET, and other physical layers. It supports error detection, option negotiation, header compression, and,
optionally, reliable transmission using an HDLC-type frame format.

Let us now turn from the PPP frame format to the way lines are brought up and down. The (simplified) diagram
of Fig. 3-28 shows the phases that a line goes through when it is brought up, used, and taken down again. This
sequence applies both to modem connections and to router-router connections.

Figure 3-28. A simplified phase diagram for bringing a line up and down.

Carriar Both sidas Authentication

detected agree on options successiul
.

\ N/
\—| Establish |[—=— Authenticate H

_J Failed
T o]

Failad

/; Terminate |-/-4— Cpen |-_j{"-.

!
Carrigr Done NCP
dropped configuration

The protocol starts with the line in the DEAD state, which means that no physical layer carrier is present and no
physical layer connection exists. After physical connection is established, the line moves to ESTABLISH. At that
point LCP option negotiation begins, which, if successful, leads to AUTHENTICATE. Now the two parties can
check on each other's identities if desired. When the NETWORK phase is entered, the appropriate NCP protocol
is invoked to configure the network layer. If the configuration is successful, OPEN is reached and data transport
can take place. When data transport is finished, the line moves into the TERMINATE phase, and from there,
back to DEAD when the carrier is dropped.

LCP negotiates data link protocol options during the ESTABLISH phase. The LCP protocol is not actually
concerned with the options themselves, but with the mechanism for negotiation. It provides a way for the
initiating process to make a proposal and for the responding process to accept or reject it, in whole or in part. It
also provides a way for the two processes to test the line quality to see if they consider it good enough to set up
a connection. Finally, the LCP protocol also allows lines to be taken down when they are no longer needed.



Eleven types of LCP frames are defined in RFC 1661. These are listed in Fig. 3-29. The four Configure- types
allow the initiator (I) to propose option values and the responder (R) to accept or reject them. In the latter case,
the responder can make an alternative proposal or announce that it is not willing to negotiate certain options at
all. The options being negotiated and their proposed values are part of the LCP frames.

Figure 3-29. The LCP frame types.

MName | Direction | Description
Configure-request | I1=HR | List of proposed options and values
Configure-ack | | — R | All options are accepted
Configure-nak | 1«R | Some options are not accepted
Configure-reject l R Some options are not negotiable
Terminate-request | | =R | Request to shut the ling down
Terminate-ack | 1<R | OK, line shut down
Code-reject | | +— R | Unknown request received
Protocol-reject . |+ R . Unknown protocol requested
Echo-request | | =R | Please send this frame back
Echo-reply | — R Here is the frame back
Discard-request | =R Just discard this frame (for testing)

The Terminate- codes shut a line down when it is no longer needed. The Code-reject and Protocol-reject codes
indicate that the responder got something that it does not understand. This situation could mean that an
undetected transmission error has occurred, but more likely it means that the initiator and responder are running
different versions of the LCP protocol. The Echo- types are used to test the line quality. Finally, Discard-request
help debugging. If either end is having trouble getting bits onto the wire, the programmer can use this type for
testing. If it manages to get through, the receiver just throws it away, rather than taking some other action that
might confuse the person doing the testing.

The options that can be negotiated include setting the maximum payload size for data frames, enabling
authentication and choosing a protocol to use, enabling line-quality monitoring during normal operation, and
selecting various header compression options.

There is little to say about the NCP protocols in a general way. Each one is specific to some network layer
protocol and allows configuration requests to be made that are specific to that protocol. For IP, for example,
dynamic address assignment is the most important possibility.

3.7 Summary

The task of the data link layer is to convert the raw bit stream offered by the physical layer into a stream of
frames for use by the network layer. Various framing methods are used, including character count, byte stuffing,
and bit stuffing. Data link protocols can provide error control to retransmit damaged or lost frames. To prevent a
fast sender from overrunning a slow receiver, the data link protocol can also provide flow control. The sliding
window mechanism is widely used to integrate error control and flow control in a convenient way.

Sliding window protocols can be categorized by the size of the sender's window and the size of the receiver's
window. When both are equal to 1, the protocol is stop-and-wait. When the sender's window is greater than 1,
for example, to prevent the sender from blocking on a circuit with a long propagation delay, the receiver can be
programmed either to discard all frames other than the next one in sequence or to buffer out-of-order frames
until they are needed.

We examined a series of protocols in this chapter. Protocol 1 is designed for an error-free environment in which
the receiver can handle any flow sent to it. Protocol 2 still assumes an error-free environment but introduces flow
control. Protocol 3 handles errors by introducing sequence numbers and using the stop-and-wait algorithm.
Protocol 4 allows bidirectional communication and introduces the concept of piggybacking. Protocol 5 uses a



sliding window protocol with go back n. Finally, protocol 6 uses selective repeat and negative
acknowledgements.

Protocols can be modeled using various techniques to help demonstrate their correctness (or lack thereof).
Finite state machine models and Petri net models are commonly used for this purpose.

Many networks use one of the bit-oriented protocols—SDLC, HDLC, ADCCP, or LAPB—at the data link level. All
of these protocols use flag bytes to delimit frames, and bit stuffing to prevent flag bytes from occurring in the
data. All of them also use a sliding window for flow control. The Internet uses PPP as the primary data link
protocol over point-to-point lines.

Problems

1. An upper-layer packet is split into 10 frames, each of which has an 80 percent chance of arriving
undamaged. If no error control is done by the data link protocol, how many times must the message be
sent on average to get the entire thing through?

2. The following character encoding is used in a data link protocol: A: 01000111; B: 11100011; FLAG:
01111110; ESC: 11100000 Show the bit sequence transmitted (in binary) for the four-character frame: A
B ESC FLAG when each of the following framing methods are used:

a. (a) Character count.
b. (b) Flag bytes with byte stuffing.
c. (c) Starting and ending flag bytes, with bit stuffing.

3. The following data fragment occurs in the middle of a data stream for which the byte-stuffing algorithm
described in the text is used: A B ESC C ESC FLAG FLAG D. What is the output after stuffing?

4. One of your classmates, Scrooge, has pointed out that it is wasteful to end each frame with a flag byte
and then begin the next one with a second flag byte. One flag byte could do the job as well, and a byte
saved is a byte earned. Do you agree?

5. A bit string, 0111101111101111110, needs to be transmitted at the data link layer. What is the string
actually transmitted after bit stuffing?

6. When bit stuffing is used, is it possible for the loss, insertion, or modification of a single bit to cause an
error not detected by the checksum? If not, why not? If so, how? Does the checksum length play a role
here?

7. Can you think of any circumstances under which an open-loop protocol, (e.g., a Hamming code) might
be preferable to the feedback-type protocols discussed throughout this chapter?

8. To provide more reliability than a single parity bit can give, an error-detecting coding scheme uses one
parity bit for checking all the odd-numbered bits and a second parity bit for all the even-numbered bits.
What is the Hamming distance of this code?

9. Sixteen-bit messages are transmitted using a Hamming code. How many check bits are needed to
ensure that the receiver can detect and correct single bit errors? Show the bit pattern transmitted for the
message 1101001100110101. Assume that even parity is used in the Hamming code.

10. An 8-bit byte with binary value 10101111 is to be encoded using an even-parity Hamming code. What is
the binary value after encoding?

11. A 12-bit Hamming code whose hexadecimal value is OXE4F arrives at a receiver. What was the original
value in hexadecimal? Assume that not more than 1 bit is in error.

12. One way of detecting errors is to transmit data as a block of n rows of k bits per row and adding parity
bits to each row and each column. The lower-right corner is a parity bit that checks its row and its
column. Will this scheme detect all single errors? Double errors? Triple errors?

13. A block of bits with n rows and k columns uses horizontal and vertical parity bits for error detection.
Suppose that exactly 4 bits are inverted due to transmission errors. Derive an expression for the
probability that the error will be undetected.

14. What is the remainder obtained by dividing x” + x° + 1 by the generator polynomial x® + 1?

15. A bit stream 10011101 is transmitted using the standard CRC method described in the text. The
generator polynomial is x* + 1. Show the actual bit string transmitted. Suppose the third bit from the left
is inverted during transmission. Show that this error is detected at the receiver's end.

16. Data link protocols almost always put the CRC in a trailer rather than in a header. Why?

17. A channel has a bit rate of 4 kbps and a propagation delay of 20 msec. For what range of frame sizes
does stop-and-wait give an efficiency of at least 50 percent?

18. A 3000-km-long T1 trunk is used to transmit 64-byte frames using protocol 5. If the propagation speed is
6 psec/km, how many bits should the sequence numbers be?



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

In protocol 3, is it possible that the sender starts the timer when it is already running? If so, how might
this occur? If not, why is it impossible?
Imagine a sliding window protocol using so many bits for sequence numbers that wraparound never
occurs. What relations must hold among the four window edges and the window size, which is constant
and the same for both the sender and the receiver.

<, <

If the procedure between in protocol 5 checked for the condition a —=b =c instead of the condition a

<

=D < ¢, would that have any effect on the protocol's correctness or efficiency? Explain your answer.
In protocol 6, when a data frame arrives, a check is made to see if the sequence number differs from the
one expected and no_nak is true. If both conditions hold, a NAK is sent. Otherwise, the auxiliary timer is
started. Suppose that the else clause were omitted. Would this change affect the protocol's correctness?
Suppose that the three-statement while loop near the end of protocol 6 were removed from the code.
Would this affect the correctness of the protocol or just the performance? Explain your answer.
Suppose that the case for checksum errors were removed from the switch statement of protocol 6. How
would this change affect the operation of the protocol?
In protocol 6 the code for frame_arrival has a section used for NAKs. This section is invoked if the
incoming frame is a NAK and another condition is met. Give a scenario where the presence of this other
condition is essential.
Imagine that you are writing the data link layer software for a line used to send data to you, but not from
you. The other end uses HDLC, with a 3-bit sequence number and a window size of seven frames. You
would like to buffer as many out-of-sequence frames as possible to enhance efficiency, but you are not
allowed to modify the software on the sending side. Is it possible to have a receiver window greater than
1, and still guarantee that the protocol will never fail? If so, what is the largest window that can be safely
used?
Consider the operation of protocol 6 over a 1-Mbps error-free line. The maximum frame size is 1000 bits.
New packets are generated 1 second apart. The timeout interval is 10 msec. If the special
acknowledgement timer were eliminated, unnecessary timeouts would occur. How many times would the
average message be transmitted?
In protocol 6, MAX_SEQ = 2" - 1. While this condition is obviously desirable to make efficient use of
header bits, we have not demonstrated that it is essential. Does the protocol work correctly for
MAX_SEQ = 4, for example?
Frames of 1000 bits are sent over a 1-Mbps channel using a geostationary satellite whose propagation
time from the earth is 270 msec. Acknowledgements are always piggybacked onto data frames. The
headers are very short. Three-bit sequence numbers are used. What is the maximum achievable
channel utilization for

a. (a) Stop-and-wait.

b. (b) Protocol 5.

c. (c) Protocol 6.
Compute the fraction of the bandwidth that is wasted on overhead (headers and retransmissions) for
protocol 6 on a heavily-loaded 50-kbps satellite channel with data frames consisting of 40 header and
3960 data bits. Assume that the signal propagation time from the earth to the satellite is 270 msec. ACK
frames never occur. NAK frames are 40 bits. The error rate for data frames is 1 percent, and the error
rate for NAK frames is negligible. The sequence numbers are 8 bits.
Consider an error-free 64-kbps satellite channel used to send 512-byte data frames in one direction, with
very short acknowledgements coming back the other way. What is the maximum throughput for window
sizes of 1, 7, 15, and 127? The earth-satellite propagation time is 270 msec.
A 100-km-long cable runs at the T1 data rate. The propagation speed in the cable is 2/3 the speed of
light in vacuum. How many bits fit in the cable?
Suppose that we model protocol 4 using the finite state machine model. How many states exist for each
machine? How many states exist for the communication channel? How many states exist for the
complete system (two machines and the channel)? Ignore the checksum errors.
Give the firing sequence for the Petri net of Fig. 3-23 corresponding to the state sequence (000), (01A),
(01—), (010), (01A) in Fig. 3-21. Explain in words what the sequence represents.
Given the transition rules AC =*B, B —*AC, CD =—*E, and E =—2*CD, draw the Petri net described.
From the Petri net, draw the finite state graph reachable from the initial state ACD. What well-known
concept do these transition rules model?
PPP is based closely on HDLC, which uses bit stuffing to prevent accidental flag bytes within the
payload from causing confusion. Give at least one reason why PPP uses byte stuffing instead.
What is the minimum overhead to send an IP packet using PPP? Count only the overhead introduced by
PPP itself, not the IP header overhead.



38.

39.

The goal of this lab exercise is to implement an error detection mechanism using the standard CRC
algorithm described in the text. Write two programs, generator and verifier. The generator program reads
from standard input an n-bit message as a string of 0s and 1s as a line of ASCII text. The second line is
the k-bit polynomial, also in ASCII. It outputs to standard output a line of ASCII text with n + k Os and 1s
representing the message to be transmitted. Then it outputs the polynomial, just as it read it in. The
verifier program reads in the output of the generator program and outputs a message indicating whether
it is correct or not. Finally, write a program, alter, that inverts one bit on the first line depending on its
argument (the bit number counting the leftmost bit as 1) but copies the rest of the two lines correctly. By

typing:

generator <file | verifier

you should see that the message is correct, but by typing
generator <file | alter arg | verifier

you should get the error message.

Write a program to simulate the behavior of a Petri net. The program should read in the transition rules
as well as a list of states corresponding to the network link layer issuing a new packet or accepting a
new packet. From the initial state, also read in, the program should pick enabled transitions at random
and fire them, checking to see if a host ever accepts 2 packets without the other host emitting a new one
in between.



Chapter 4. The Medium Access Control
Sublayer

As we pointed out in Chap. 1, networks can be divided into two categories: those using point-
to-point connections and those using broadcast channels. This chapter deals with broadcast
networks and their protocols.

In any broadcast network, the key issue is how to determine who gets to use the channel
when there is competition for it. To make this point clearer, consider a conference call in which
six people, on six different telephones, are all connected so that each one can hear and talk to
all the others. It is very likely that when one of them stops speaking, two or more will start
talking at once, leading to chaos. In a face-to-face meeting, chaos is avoided by external
means, for example, at a meeting, people raise their hands to request permission to speak.
When only a single channel is available, determining who should go next is much harder. Many
protocols for solving the problem are known and form the contents of this chapter. In the
literature, broadcast channels are sometimes referred to as multiaccess channels or
random access channels.

The protocols used to determine who goes next on a multiaccess channel belong to a sublayer
of the data link layer called the MAC (Medium Access Control) sublayer. The MAC sublayer
is especially important in LANs, many of which use a multiaccess channel as the basis for
communication. WANS, in contrast, use point-to-point links, except for satellite networks.
Because multiaccess channels and LANs are so closely related, in this chapter we will discuss
LANSs in general, including a few issues that are not strictly part of the MAC sublayer.

Technically, the MAC sublayer is the bottom part of the data link layer, so logically we should
have studied it before examining all the point-to-point protocols in Chap. 3. Nevertheless, for
most people, understanding protocols involving multiple parties is easier after two-party
protocols are well understood. For that reason we have deviated slightly from a strict bottom-
up order of presentation.

4.1 The Channel Allocation Problem

The central theme of this chapter is how to allocate a single broadcast channel among
competing users. We will first look at static and dynamic schemes in general. Then we will
examine a number of specific algorithms.

4.1.1 Static Channel Allocation in LANs and MANs

The traditional way of allocating a single channel, such as a telephone trunk, among multiple
competing users is Frequency Division Multiplexing (FDM). If there are N users, the bandwidth
is divided into N equal-sized portions (see Fig. 2-31), each user being assigned one portion.
Since each user has a private frequency band, there is no interference between users. When
there is only a small and constant number of users, each of which has a heavy (buffered) load
of traffic (e.qg., carriers' switching offices), FDM is a simple and efficient allocation mechanism.

However, when the number of senders is large and continuously varying or the traffic is
bursty, FDM presents some problems. If the spectrum is cut up into N regions and fewer than
N users are currently interested in communicating, a large piece of valuable spectrum will be
wasted. If more than N users want to communicate, some of them will be denied permission
for lack of bandwidth, even if some of the users who have been assigned a frequency band
hardly ever transmit or receive anything.



However, even assuming that the number of users could somehow be held constant at N,
dividing the single available channel into static subchannels is inherently inefficient. The basic
problem is that when some users are quiescent, their bandwidth is simply lost. They are not
using it, and no one else is allowed to use it either. Furthermore, in most computer systems,
data traffic is extremely bursty (peak traffic to mean traffic ratios of 1000:1 are common).
Consequently, most of the channels will be idle most of the time.

The poor performance of static FDM can easily be seen from a simple queueing theory
calculation. Let us start with the mean time delay, T, for a channel of capacity C bps, with an
arrival rate of A frames/sec, each frame having a length drawn from an exponential probability
density function with mean 1/ bits/frame. With these parameters the arrival rate is A
frames/sec and the service rate is uC frames/sec. From queueing theory it can be shown that
for Poisson arrival and service times,

1

T=—o-
uc - A

For example, if C is 100 Mbps, the mean frame length, 1/u, is 10,000 bits, and the frame
arrival rate, A, is 5000 frames/sec, then T = 200 psec. Note that if we ignored the queueing
delay and just asked how long it takes to send a 10,000 bit frame on a 100-Mbps network, we
would get the (incorrect) answer of 100 psec. That result only holds when there is no
contention for the channel.

Now let us divide the single channel into N independent subchannels, each with capacity C/N
bps. The mean input rate on each of the subchannels will now be A/N. Recomputing T we get

Equation 4
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The mean delay using FDM is N times worse than if all the frames were somehow magically
arranged orderly in a big central queue.

Precisely the same arguments that apply to FDM also apply to time division multiplexing
(TDM). Each user is statically allocated every Nth time slot. If a user does not use the allocated
slot, it just lies fallow. The same holds if we split up the networks physically. Using our
previous example again, if we were to replace the 100-Mbps network with 10 networks of 10
Mbps each and statically allocate each user to one of them, the mean delay would jump from
200 psec to 2 msec.

Since none of the traditional static channel allocation methods work well with bursty traffic, we
will now explore dynamic methods.

4.1.2 Dynamic Channel Allocation in LANs and MANs

Before we get into the first of the many channel allocation methods to be discussed in this
chapter, it is worthwhile carefully formulating the allocation problem. Underlying all the work
done in this area are five key assumptions, described below.



Station Model. The model consists of N independent stations (e.g., computers, telephones,
or personal communicators), each with a program or user that generates frames for
transmission. Stations are sometimes called terminals. The probability of a frame being
generated in an interval of length At is AAt, where X is a constant (the arrival rate of new
frames). Once a frame has been generated, the station is blocked and does nothing until the
frame has been successfully transmitted.

Single Channel Assumption. A single channel is available for all communication. All stations
can transmit on it and all can receive from it. As far as the hardware is concerned, all stations
are equivalent, although protocol software may assign priorities to them.

Collision Assumption. If two frames are transmitted simultaneously, they overlap in time
and the resulting signal is garbled. This event is called a collision. All stations can detect
collisions. A collided frame must be transmitted again later. There are no errors other than
those generated by collisions.

4a. Continuous Time. Frame transmission can begin at any instant. There is no master clock
dividing time into discrete intervals.

4b. Slotted Time. Time is divided into discrete intervals (slots). Frame transmissions always
begin at the start of a slot. A slot may contain 0, 1, or more frames, corresponding to an idle
slot, a successful transmission, or a collision, respectively.

5a. Carrier Sense. Stations can tell if the channel is in use before trying to use it. If the
channel is sensed as busy, no station will attempt to use it until it goes idle.

5b. No Carrier Sense. Stations cannot sense the channel before trying to use it. They just go
ahead and transmit. Only later can they determine whether the transmission was successful.

Some discussion of these assumptions is in order. The first one says that stations are
independent and that work is generated at a constant rate. It also implicitly assumes that each
station only has one program or user, so while the station is blocked, no new work is
generated. More sophisticated models allow multiprogrammed stations that can generate work
while a station is blocked, but the analysis of these stations is much more complex.

The single channel assumption is the heart of the model. There are no external ways to
communicate. Stations cannot raise their hands to request that the teacher call on them.

The collision assumption is also basic, although in some systems (notably spread spectrum),
this assumption is relaxed, with surprising results. Also, some LANSs, such as token rings, pass
a special token from station to station, possession of which allows the current holder to
transmit a frame. But in the coming sections we will stick to the single channel with contention
and collisions model.

Two alternative assumptions about time are possible. Either it is continuous (4a) or it is slotted
(4b). Some systems use one and some systems use the other, so we will discuss and analyze
both. For a given system, only one of them holds.

Similarly, a network can either have carrier sensing (5a) or not have it (5b). LANs generally have
carrier sense. However, wireless networks cannot use it effectively because not every station may
be within radio range of every other station. Stations on wired carrier sense networks can terminate
their transmission prematurely if they discover that it is colliding with another transmission.
Collision detection is rarely done on wireless networks, for engineering reasons. Note that the word
“carrier" in this sense refers to an electrical signal on the cable and has nothing to do with the
common carriers (e.g., telephone companies) that date back to the Pony Express days.



4.2 Multiple Access Protocols

Many algorithms for allocating a multiple access channel are known. In the following sections
we will study a small sample of the more interesting ones and give some examples of their
use.

4.2.1 ALOHA

In the 1970s, Norman Abramson and his colleagues at the University of Hawaii devised a new
and elegant method to solve the channel allocation problem. Their work has been extended by
many researchers since then (Abramson, 1985). Although Abramson's work, called the ALOHA
system, used ground-based radio broadcasting, the basic idea is applicable to any system in
which uncoordinated users are competing for the use of a single shared channel.

We will discuss two versions of ALOHA here: pure and slotted. They differ with respect to
whether time is divided into discrete slots into which all frames must fit. Pure ALOHA does not
require global time synchronization; slotted ALOHA does.

Pure ALOHA

The basic idea of an ALOHA system is simple: let users transmit whenever they have data to
be sent. There will be collisions, of course, and the colliding frames will be damaged. However,
due to the feedback property of broadcasting, a sender can always find out whether its frame
was destroyed by listening to the channel, the same way other users do. With a LAN, the
feedback is immediate; with a satellite, there is a delay of 270 msec before the sender knows
if the transmission was successful. If listening while transmitting is not possible for some
reason, acknowledgements are needed. If the frame was destroyed, the sender just waits a
random amount of time and sends it again. The waiting time must be random or the same
frames will collide over and over, in lockstep. Systems in which multiple users share a common
channel in a way that can lead to conflicts are widely known as contention systems.

A sketch of frame generation in an ALOHA system is given in Fig. 4-1. We have made the
frames all the same length because the throughput of ALOHA systems is maximized by having
a uniform frame size rather than by allowing variable length frames.

Figure 4-1. In pure ALOHA, frames are transmitted at completely
arbitrary times.
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Whenever two frames try to occupy the channel at the same time, there will be a collision and
both will be garbled. If the first bit of a new frame overlaps with just the last bit of a frame
almost finished, both frames will be totally destroyed and both will have to be retransmitted
later. The checksum cannot (and should not) distinguish between a total loss and a near miss.
Bad is bad.



An interesting question is: What is the efficiency of an ALOHA channel? In other words, what
fraction of all transmitted frames escape collisions under these chaotic circumstances? Let us
first consider an infinite collection of interactive users sitting at their computers (stations). A
user is always in one of two states: typing or waiting. Initially, all users are in the typing state.
When a line is finished, the user stops typing, waiting for a response. The station then
transmits a frame containing the line and checks the channel to see if it was successful. If so,
the user sees the reply and goes back to typing. If not, the user continues to wait and the
frame is retransmitted over and over until it has been successfully sent.

Let the "frame time'" denote the amount of time needed to transmit the standard, fixed-length
frame (i.e., the frame length divided by the bit rate). At this point we assume that the infinite
population of users generates new frames according to a Poisson distribution with mean N
frames per frame time. (The infinite-population assumption is needed to ensure that N does
not decrease as users become blocked.) If N > 1, the user community is generating frames at
a higher rate than the channel can handle, and nearly every frame will suffer a collision. For
reasonable throughput we would expect 0 < N < 1.

In addition to the new frames, the stations also generate retransmissions of frames that
previously suffered collisions. Let us further assume that the probability of k transmission
attempts per frame time, old and new combined, is also Poisson, with mean G per frame time.

Clearly, G :—}N. At low load (i.e., N ="-'O), there will be few collisions, hence few

retransmissions, so G =N. At high load there will be many collisions, so G > N. Under all
loads, the throughput, S, is just the offered load, G, times the probability, Py, of a transmission
succeeding—that is, S = GPg, where Py is the probability that a frame does not suffer a
collision.

A frame will not suffer a collision if no other frames are sent within one frame time of its start,
as shown in Fig. 4-2. Under what conditions will the shaded frame arrive undamaged? Let t be
the time required to send a frame. If any other user has generated a frame between time t,
and tp + t, the end of that frame will collide with the beginning of the shaded one. In fact, the
shaded frame's fate was already sealed even before the first bit was sent, but since in pure
ALOHA a station does not listen to the channel before transmitting, it has no way of knowing
that another frame was already underway. Similarly, any other frame started between ty + t
and to + 2t will bump into the end of the shaded frame.

Figure 4-2. Vulnerable period for the shaded frame.
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The probability that k frames are generated during a given frame time is given by the Poisson
distribution:

Equation 4



so the probability of zero frames is just e®. In an interval two frame times long, the mean
number of frames generated is 2G. The probability of no other traffic being initiated during the
entire vulnerable period is thus given by P, = e . Using S = GP,, we get

§=Ge¢

The relation between the offered traffic and the throughput is shown in Fig. 4-3. The maximum
throughput occurs at G = 0.5, with S = 1/2e, which is about 0.184. In other words, the best
we can hope for is a channel utilization of 18 percent. This result is not very encouraging, but
with everyone transmitting at will, we could hardly have expected a 100 percent success rate.

Slotted ALOHA

In 1972, Roberts published a method for doubling the capacity of an ALOHA system (Roberts,
1972). His proposal was to divide time into discrete intervals, each interval corresponding to
one frame. This approach requires the users to agree on slot boundaries. One way to achieve
synchronization would be to have one special station emit a pip at the start of each interval,
like a clock.

In Roberts' method, which has come to be known as slotted ALOHA, in contrast to
Abramson's pure ALOHA, a computer is not permitted to send whenever a carriage return is
typed. Instead, it is required to wait for the beginning of the next slot. Thus, the continuous
pure ALOHA is turned into a discrete one. Since the vulnerable period is now halved, the
probability of no other traffic during the same slot as our test frame is e® which leads to

Equation 4

§=Ge ™"

As you can see from Fig. 4-3, slotted ALOHA peaks at G = 1, with a throughput of S =1/e or
about 0.368, twice that of pure ALOHA. If the system is operating at G = 1, the probability of
an empty slot is 0.368 (from Eqg. 4-2). The best we can hope for using slotted ALOHA is 37
percent of the slots empty, 37 percent successes, and 26 percent collisions. Operating at
higher values of G reduces the number of empties but increases the number of collisions
exponentially. To see how this rapid growth of collisions with G comes about, consider the
transmission of a test frame. The probability that it will avoid a collision is e®, the probability
that all the other users are silent in that slot. The probability of a collision is then just 1 - e©.
The probability of a transmission requiring exactly k attempts, (i.e., k - 1 collisions followed by
one success) is

Figure 4-3. Throughput versus offered traffic for ALOHA systems.
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The expected number of transmissions, E, per carriage return typed is then

E=YkPy = The™ (1 —eC)f~! = ¢
k=1 k=1

As a result of the exponential dependence of E upon G, small increases in the channel load can
drastically reduce its performance.

Slotted Aloha is important for a reason that may not be initially obvious. It was devised in the
1970s, used in a few early experimental systems, then almost forgotten. When Internet access
over the cable was invented, all of a sudden there was a problem of how to allocate a shared
channel among multiple competing users, and slotted Aloha was pulled out of the garbage can
to save the day. It has often happened that protocols that are perfectly valid fall into disuse for
political reasons (e.g., some big company wants everyone to do things its way), but years later
some clever person realizes that a long-discarded protocol solves his current problem. For this
reason, in this chapter we will study a number of elegant protocols that are not currently in
widespread use, but might easily be used in future applications, provided that enough network
designers are aware of them. Of course, we will also study many protocols that are in current
use as well.

4.2.2 Carrier Sense Multiple Access Protocols

With slotted ALOHA the best channel utilization that can be achieved is 1/e. This is hardly
surprising, since with stations transmitting at will, without paying attention to what the other
stations are doing, there are bound to be many collisions. In local area networks, however, it
is possible for stations to detect what other stations are doing, and adapt their behavior
accordingly. These networks can achieve a much better utilization than 1/e. In this section we
will discuss some protocols for improving performance.

Protocols in which stations listen for a carrier (i.e., a transmission) and act accordingly are
called carrier sense protocols. A number of them have been proposed. Kleinrock and Tobagi
(1975) have analyzed several such protocols in detail. Below we will mention several versions
of the carrier sense protocols.

Persistent and Nonpersistent CSMA



The first carrier sense protocol that we will study here is called 1-persistent CSMA (Carrier
Sense Multiple Access). When a station has data to send, it first listens to the channel to see if
anyone else is transmitting at that moment. If the channel is busy, the station waits until it
becomes idle. When the station detects an idle channel, it transmits a frame. If a collision
occurs, the station waits a random amount of time and starts all over again. The protocol is
called 1-persistent because the station transmits with a probability of 1 when it finds the
channel idle.

The propagation delay has an important effect on the performance of the protocol. There is a
small chance that just after a station begins sending, another station will become ready to
send and sense the channel. If the first station's signal has not yet reached the second one,
the latter will sense an idle channel and will also begin sending, resulting in a collision. The
longer the propagation delay, the more important this effect becomes, and the worse the
performance of the protocol.

Even if the propagation delay is zero, there will still be collisions. If two stations become ready
in the middle of a third station's transmission, both will wait politely until the transmission
ends and then both will begin transmitting exactly simultaneously, resulting in a collision. If
they were not so impatient, there would be fewer collisions. Even so, this protocol is far better
than pure ALOHA because both stations have the decency to desist from interfering with the
third station's frame. Intuitively, this approach will lead to a higher performance than pure
ALOHA. Exactly the same holds for slotted ALOHA.

A second carrier sense protocol is nonpersistent CSMA. In this protocol, a conscious attempt
is made to be less greedy than in the previous one. Before sending, a station senses the
channel. If no one else is sending, the station begins doing so itself. However, if the channel is
already in use, the station does not continually sense it for the purpose of seizing it
immediately upon detecting the end of the previous transmission. Instead, it waits a random
period of time and then repeats the algorithm. Consequently, this algorithm leads to better
channel utilization but longer delays than 1-persistent CSMA.

The last protocol is p-persistent CSMA. It applies to slotted channels and works as follows.
When a station becomes ready to send, it senses the channel. If it is idle, it transmits with a
probability p. With a probability q = 1 - p, it defers until the next slot. If that slot is also idle, it
either transmits or defers again, with probabilities p and . This process is repeated until either
the frame has been transmitted or another station has begun transmitting. In the latter case,
the unlucky station acts as if there had been a collision (i.e., it waits a random time and starts
again). If the station initially senses the channel busy, it waits until the next slot and applies
the above algorithm. Figure 4-4 shows the computed throughput versus offered traffic for all
three protocols, as well as for pure and slotted ALOHA.

Figure 4-4. Comparison of the channel utilization versus load for
various random access protocols.
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CSMA with Collision Detection

Persistent and nonpersistent CSMA protocols are clearly an improvement over ALOHA because
they ensure that no station begins to transmit when it senses the channel busy. Another
improvement is for stations to abort their transmissions as soon as they detect a collision. In
other words, if two stations sense the channel to be idle and begin transmitting
simultaneously, they will both detect the collision almost immediately. Rather than finish
transmitting their frames, which are irretrievably garbled anyway, they should abruptly stop
transmitting as soon as the collision is detected. Quickly terminating damaged frames saves
time and bandwidth. This protocol, known as CSMA/CD (CSMA with Collision Detection) is
widely used on LANs in the MAC sublayer. In particular, it is the basis of the popular Ethernet
LAN, so it is worth devoting some time to looking at it in detail.

CSMA/CD, as well as many other LAN protocols, uses the conceptual model of Fig. 4-5. At the
point marked ty, a station has finished transmitting its frame. Any other station having a frame
to send may now attempt to do so. If two or more stations decide to transmit simultaneously,
there will be a collision. Collisions can be detected by looking at the power or pulse width of
the received signal and comparing it to the transmitted signal.

Figure 4-5. CSMA/CD can be in one of three states: contention,
transmission, or idle.
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After a station detects a collision, it aborts its transmission, waits a random period of time, and
then tries again, assuming that no other station has started transmitting in the meantime.
Therefore, our model for CSMA/CD will consist of alternating contention and transmission
periods, with idle periods occurring when all stations are quiet (e.g., for lack of work).

Now let us look closely at the details of the contention algorithm. Suppose that two stations
both begin transmitting at exactly time t,. How long will it take them to realize that there has
been a collision? The answer to this question is vital to determining the length of the
contention period and hence what the delay and throughput will be. The minimum time to



detect the collision is then just the time it takes the signal to propagate from one station to the
other.

Based on this reasoning, you might think that a station not hearing a collision for a time equal
to the full cable propagation time after starting its transmission could be sure it had seized the
cable. By "seized," we mean that all other stations knew it was transmitting and would not
interfere. This conclusion is wrong. Consider the following worst-case scenario. Let the time for
a signal to propagate between the two farthest stations be t. At ty, one station begins
transmitting. At t - ¢, an instant before the signal arrives at the most distant station, that
station also begins transmitting. Of course, it detects the collision almost instantly and stops,
but the little noise burst caused by the collision does not get back to the original station until
time 21 - ¢. In other words, in the worst case a station cannot be sure that it has seized the
channel until it has transmitted for 2t without hearing a collision. For this reason we will model
the contention interval as a slotted ALOHA system with slot width 2t. On a 1-km long coaxial

cable, t =5 pusec. For simplicity we will assume that each slot contains just 1 bit. Once the
channel has been seized, a station can transmit at any rate it wants to, of course, not just at 1
bit per 2t sec.

It is important to realize that collision detection is an analog process. The station's hardware
must listen to the cable while it is transmitting. If what it reads back is different from what it is
putting out, it knows that a collision is occurring. The implication is that the signal encoding
must allow collisions to be detected (e.g., a collision of two 0-volt signals may well be
impossible to detect). For this reason, special encoding is commonly used.

It is also worth noting that a sending station must continually monitor the channel, listening
for noise bursts that might indicate a collision. For this reason, CSMA/CD with a single channel
is inherently a half-duplex system. It is impossible for a station to transmit and receive frames
at the same time because the receiving logic is in use, looking for collisions during every
transmission.

To avoid any misunderstanding, it is worth noting that no MAC-sublayer protocol guarantees
reliable delivery. Even in the absence of collisions, the receiver may not have copied the frame
correctly for various reasons (e.g., lack of buffer space or a missed interrupt).

4.2.3 Collision-Free Protocols

Although collisions do not occur with CSMA/CD once a station has unambiguously captured the
channel, they can still occur during the contention period. These collisions adversely affect the
system performance, especially when the cable is long (i.e., large t) and the frames are short.
And CSMA/CD is not universally applicable. In this section, we will examine some protocols
that resolve the contention for the channel without any collisions at all, not even during the
contention period. Most of these are not currently used in major systems, but in a rapidly
changing field, having some protocols with excellent properties available for future systems is
often a good thing.

In the protocols to be described, we assume that there are exactly N stations, each with a
unique address from O to N - 1 "wired" into it. It does not matter that some stations may be
inactive part of the time. We also assume that propagation delay is negligible. The basic
question remains: Which station gets the channel after a successful transmission? We continue
using the model of Fig. 4-5 with its discrete contention slots.

A Bit-Map Protocol

In our first collision-free protocol, the basic bit-map method, each contention period consists
of exactly N slots. If station O has a frame to send, it transmits a 1 bit during the zeroth slot.
No other station is allowed to transmit during this slot. Regardless of what station O does,



station 1 gets the opportunity to transmit a 1 during slot 1, but only if it has a frame queued.
In general, station j may announce that it has a frame to send by inserting a 1 bit into slot j.
After all N slots have passed by, each station has complete knowledge of which stations wish
to transmit. At that point, they begin transmitting in numerical order (see Fig. 4-6).

Figure 4-6. The basic bit-map protocol.
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Since everyone agrees on who goes next, there will never be any collisions. After the last
ready station has transmitted its frame, an event all stations can easily monitor, another N bit
contention period is begun. If a station becomes ready just after its bit slot has passed by, it is
out of luck and must remain silent until every station has had a chance and the bit map has
come around again. Protocols like this in which the desire to transmit is broadcast before the
actual transmission are called reservation protocols.

Let us briefly analyze the performance of this protocol. For convenience, we will measure time
in units of the contention bit slot, with data frames consisting of d time units. Under conditions
of low load, the bit map will simply be repeated over and over, for lack of data frames.

Consider the situation from the point of view of a low-numbered station, such as O or 1.
Typically, when it becomes ready to send, the "current" slot will be somewhere in the middle
of the bit map. On average, the station will have to wait N/2 slots for the current scan to finish
and another full N slots for the following scan to run to completion before it may begin
transmitting.

The prospects for high-numbered stations are brighter. Generally, these will only have to wait
half a scan (N/2 bit slots) before starting to transmit. High-numbered stations rarely have to
wait for the next scan. Since low-numbered stations must wait on average 1.5N slots and high-
numbered stations must wait on average 0.5N slots, the mean for all stations is N slots. The
channel efficiency at low load is easy to compute. The overhead per frame is N bits, and the
amount of data is d bits, for an efficiency of d/(N + d).

At high load, when all the stations have something to send all the time, the N bit contention
period is prorated over N frames, yielding an overhead of only 1 bit per frame, or an efficiency
of d/(d + 1). The mean delay for a frame is equal to the sum of the time it queues inside its
station, plus an additional N(d + 1)/2 once it gets to the head of its internal queue.

Binary Countdown

A problem with the basic bit-map protocol is that the overhead is 1 bit per station, so it does
not scale well to networks with thousands of stations. We can do better than that by using
binary station addresses. A station wanting to use the channel now broadcasts its address as a
binary bit string, starting with the high-order bit. All addresses are assumed to be the same
length. The bits in each address position from different stations are BOOLEAN ORed together.
We will call this protocol binary countdown. It was used in Datakit (Fraser, 1987). It
implicitly assumes that the transmission delays are negligible so that all stations see asserted
bits essentially instantaneously.

To avoid conflicts, an arbitration rule must be applied: as soon as a station sees that a high-
order bit position that is O in its address has been overwritten with a 1, it gives up. For
example, if stations 0010, 0100, 1001, and 1010 are all trying to get the channel, in the first



bit time the stations transmit O, O, 1, and 1, respectively. These are ORed together to form a
1. Stations 0010 and 0100 see the 1 and know that a higher-numbered station is competing
for the channel, so they give up for the current round. Stations 1001 and 1010 continue.

The next bit is 0, and both stations continue. The next bit is 1, so station 1001 gives up. The
winner is station 1010 because it has the highest address. After winning the bidding, it may
now transmit a frame, after which another bidding cycle starts. The protocol is illustrated in
Fig. 4-7. It has the property that higher-numbered stations have a higher priority than lower-
numbered stations, which may be either good or bad, depending on the context.

Figure 4-7. The binary countdown protocol. A dash indicates silence.
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The channel efficiency of this method is d/(d + log, N). If, however, the frame format has been
cleverly chosen so that the sender's address is the first field in the frame, even these log, N
bits are not wasted, and the efficiency is 100 percent.

Mok and Ward (1979) have described a variation of binary countdown using a parallel rather
than a serial interface. They also suggest using virtual station numbers, with the virtual station
numbers from 0 up to and including the successful station being circularly permuted after each
transmission, in order to give higher priority to stations that have been silent unusually long.
For example, if stations C, H, D, A, G, B, E, F have priorities 7, 6, 5, 4, 3, 2, 1, and O,
respectively, then a successful transmission by D puts it at the end of the list, giving a priority
order of C, H, A, G, B, E, F, D. Thus, C remains virtual station 7, but A moves up from 4 to 5
and D drops from 5 to 0. Station D will now only be able to acquire the channel if no other
station wants it.

Binary countdown is an example of a simple, elegant, and efficient protocol that is waiting to
be rediscovered. Hopefully, it will find a new home some day.

4.2.4 Limited-Contention Protocols

We have now considered two basic strategies for channel acquisition in a cable network:
contention, as in CSMA, and collision-free methods. Each strategy can be rated as to how well
it does with respect to the two important performance measures, delay at low load and
channel efficiency at high load. Under conditions of light load, contention (i.e., pure or slotted
ALOHA) is preferable due to its low delay. As the load increases, contention becomes
increasingly less attractive, because the overhead associated with channel arbitration becomes
greater. Just the reverse is true for the collision-free protocols. At low load, they have high
delay, but as the load increases, the channel efficiency improves rather than gets worse as it
does for contention protocols.



Obviously, it would be nice if we could combine the best properties of the contention and
collision-free protocols, arriving at a new protocol that used contention at low load to provide
low delay, but used a collision-free technique at high load to provide good channel efficiency.
Such protocols, which we will call limited-contention protocols, do, in fact, exist, and will
conclude our study of carrier sense networks.

Up to now the only contention protocols we have studied have been symmetric, that is, each
station attempts to acquire the channel with some probability, p, with all stations using the
same p. Interestingly enough, the overall system performance can sometimes be improved by
using a protocol that assigns different probabilities to different stations.

Before looking at the asymmetric protocols, let us quickly review the performance of the
symmetric case. Suppose that k stations are contending for channel access. Each has a
probability p of transmitting during each slot. The probability that some station successfully
acquires the channel during a given slot is then kp(1 - p)* ~*. To find the optimal value of p, we
differentiate with respect to p, set the result to zero, and solve for p. Doing so, we find that
the best value of p is 1/k. Substituting p = 1/k, we get

Equation 4

k-1
Pr[success with optimal p] = [u |

This probability is plotted in Fig. 4-8. For small numbers of stations, the chances of success are
good, but as soon as the number of stations reaches even five, the probability has dropped
close to its asymptotic value of 1/e.

Figure 4-8. Acquisition probability for a symmetric contention channel.
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From Fig. 4-8, it is fairly obvious that the probability of some station acquiring the channel can
be increased only by decreasing the amount of competition. The limited-contention protocols
do precisely that. They first divide the stations into (not necessarily disjoint) groups. Only the
members of group 0 are permitted to compete for slot 0. If one of them succeeds, it acquires
the channel and transmits its frame. If the slot lies fallow or if there is a collision, the members
of group 1 contend for slot 1, etc. By making an appropriate division of stations into groups,
the amount of contention for each slot can be reduced, thus operating each slot near the left

end of Fig. 4-8.



The trick is how to assign stations to slots. Before looking at the general case, let us consider
some special cases. At one extreme, each group has but one member. Such an assignment
guarantees that there will never be collisions because at most one station is contending for any
given slot. We have seen such protocols before (e.g., binary countdown). The next special case
is to assign two stations per group. The probability that both will try to transmit during a slot is
p?, which for small p is negligible. As more and more stations are assigned to the same slot,
the probability of a collision grows, but the length of the bit-map scan needed to give everyone
a chance shrinks. The limiting case is a single group containing all stations (i.e., slotted
ALOHA). What we need is a way to assign stations to slots dynamically, with many stations per
slot when the load is low and few (or even just one) station per slot when the load is high.

The Adaptive Tree Walk Protocol

One particularly simple way of performing the necessary assignment is to use the algorithm
devised by the U.S. Army for testing soldiers for syphilis during World War 1l (Dorfman, 1943).
In short, the Army took a blood sample from N soldiers. A portion of each sample was poured
into a single test tube. This mixed sample was then tested for antibodies. If none were found,
all the soldiers in the group were declared healthy. If antibodies were present, two new mixed
samples were prepared, one from soldiers 1 through N/2 and one from the rest. The process
was repeated recursively until the infected soldiers were determined.

For the computerized version of this algorithm (Capetanakis, 1979), it is convenient to think of
the stations as the leaves of a binary tree, as illustrated in Fig. 4-9. In the first contention slot
following a successful frame transmission, slot 0, all stations are permitted to try to acquire
the channel. If one of them does so, fine. If there is a collision, then during slot 1 only those
stations falling under node 2 in the tree may compete. If one of them acquires the channel,
the slot following the frame is reserved for those stations under node 3. If, on the other hand,
two or more stations under node 2 want to transmit, there will be a collision during slot 1, in
which case it is node 4's turn during slot 2.

Figure 4-9. The tree for eight stations.
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In essence, if a collision occurs during slot O, the entire tree is searched, depth first, to locate
all ready stations. Each bit slot is associated with some particular node in the tree. If a collision
occurs, the search continues recursively with the node's left and right children. If a bit slot is
idle or if only one station transmits in it, the searching of its node can stop because all ready
stations have been located. (Were there more than one, there would have been a collision.)

H

When the load on the system is heavy, it is hardly worth the effort to dedicate slot O to node
1, because that makes sense only in the unlikely event that precisely one station has a frame
to send. Similarly, one could argue that nodes 2 and 3 should be skipped as well for the same
reason. Put in more general terms, at what level in the tree should the search begin? Clearly,
the heavier the load, the farther down the tree the search should begin. We will assume that



each station has a good estimate of the number of ready stations, q, for example, from
monitoring recent traffic.

To proceed, let us number the levels of the tree from the top, with node 1 in Fig. 4-9 at level
0, nodes 2 and 3 at level 1, etc. Notice that each node at level i has a fraction 2 of the
stations below it. If the g ready stations are uniformly distributed, the expected number of
them below a specific node at level i is just 27'q. Intuitively, we would expect the optimal level
to begin searching the tree as the one at which the mean number of contending stations per
slot is 1, that is, the level at which 27q = 1. Solving this equation, we find that i = log, q.

Numerous improvements to the basic algorithm have been discovered and are discussed in
some detail by Bertsekas and Gallager (1992). For example, consider the case of stations G
and H being the only ones wanting to transmit. At node 1 a collision will occur, so 2 will be
tried and discovered idle. It is pointless to probe node 3 since it is guaranteed to have a
collision (we know that two or more stations under 1 are ready and none of them are under 2,
so they must all be under 3). The probe of 3 can be skipped and 6 tried next. When this probe
also turns up nothing, 7 can be skipped and node G tried next.

4.2.5 Wavelength Division Multiple Access Protocols

A different approach to channel allocation is to divide the channel into subchannels using FDM,
TDM, or both, and dynamically allocate them as needed. Schemes like this are commonly used
on fiber optic LANs to permit different conversations to use different wavelengths (i.e.,
frequencies) at the same time. In this section we will examine one such protocol (Humblet et
al., 1992).

A simple way to build an all-optical LAN is to use a passive star coupler (see Fig. 2-10). In
effect, two fibers from each station are fused to a glass cylinder. One fiber is for output to the
cylinder and one is for input from the cylinder. Light output by any station illuminates the
cylinder and can be detected by all the other stations. Passive stars can handle hundreds of
stations.

To allow multiple transmissions at the same time, the spectrum is divided into channels
(wavelength bands), as shown in Fig. 2-31. In this protocol, WDMA (Wavelength Division
Multiple Access), each station is assigned two channels. A narrow channel is provided as a
control channel to signal the station, and a wide channel is provided so the station can output
data frames.

Each channel is divided into groups of time slots, as shown in Fig. 4-10. Let us call the number
of slots in the control channel m and the number of slots in the data channel n + 1, where n of
these are for data and the last one is used by the station to report on its status (mainly, which
slots on both channels are free). On both channels, the sequence of slots repeats endlessly,
with slot O being marked in a special way so latecomers can detect it. All channels are
synchronized by a single global clock.

Figure 4-10. Wavelength division multiple access.
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The protocol supports three traffic classes : (1) constant data rate connection-oriented traffic,
such as uncompressed video, (2) variable data rate connection-oriented traffic, such as file
transfer, and (3) datagram traffic, such as UDP packets. For the two connection-oriented
protocols, the idea is that for A to communicate with B, it must first insert a CONNECTION
REQUEST frame in a free slot on B's control channel. If B accepts, communication can take
place on A's data channel.

Each station has two transmitters and two receivers, as follows:

A fixed-wavelength receiver for listening to its own control channel.
A tunable transmitter for sending on other stations' control channels.
A fixed-wavelength transmitter for outputting data frames.

A tunable receiver for selecting a data transmitter to listen to.

PONPE

In other words, every station listens to its own control channel for incoming requests but has
to tune to the transmitter's wavelength to get the data. Wavelength tuning is done by a Fabry-
Perot or Mach-Zehnder interferometer that filters out all wavelengths except the desired
wavelength band.

Let us now consider how station A sets up a class 2 communication channel with station B for,
say, file transfer. First, A tunes its data receiver to B's data channel and waits for the status
slot. This slot tells which control slots are currently assigned and which are free. In Fig. 4-10,
for example, we see that of B's eight control slots, O, 4, and 5 are free. The rest are occupied
(indicated by crosses).

A picks one of the free control slots, say, 4, and inserts its CONNECTION REQUEST message
there. Since B constantly monitors its control channel, it sees the request and grants it by
assigning slot 4 to A. This assignment is announced in the status slot of B's data channel.
When A sees the announcement, it knows it has a unidirectional connection. If A asked for a
two-way connection, B now repeats the same algorithm with A.

It is possible that at the same time A tried to grab B's control slot 4, C did the same thing.
Neither will get it, and both will notice the failure by monitoring the status slot in B's control
channel. They now each wait a random amount of time and try again later.

At this point, each party has a conflict-free way to send short control messages to the other
one. To perform the file transfer, A now sends B a control message saying, for example,
"Please watch my next data output slot 3. There is a data frame for you in it." When B gets



the control message, it tunes its receiver to A's output channel to read the data frame.
Depending on the higher-layer protocol, B can use the same mechanism to send back an
acknowledgement if it wishes.

Note that a problem arises if both A and C have connections to B and each of them suddenly
tells B to look at slot 3. B will pick one of these requests at random, and the other
transmission will be lost.

For constant rate traffic, a variation of this protocol is used. When A asks for a connection, it
simultaneously says something like: Is it all right if | send you a frame in every occurrence of
slot 3? If B is able to accept (i.e., has no previous commitment for slot 3), a guaranteed
bandwidth connection is established. If not, A can try again with a different proposal,
depending on which output slots it has free.

Class 3 (datagram) traffic uses still another variation. Instead of writing a CONNECTION
REQUEST message into the control slot it just found (4), it writes a DATA FOR YOU IN SLOT 3
message. If B is free during the next data slot 3, the transmission will succeed. Otherwise, the
data frame is lost. In this manner, no connections are ever needed.

Several variants of the protocol are possible. For example, instead of each station having its
own control channel, a single control channel can be shared by all stations. Each station is
assigned a block of slots in each group, effectively multiplexing multiple virtual channels onto
one physical one.

It is also possible to make do with a single tunable transmitter and a single tunable receiver
per station by having each station's channel be divided into m control slots followed by n + 1
data slots. The disadvantage here is that senders have to wait longer to capture a control slot
and consecutive data frames are farther apart because some control information is in the way.

Numerous other WDMA protocols have been proposed and implemented, differing in various
details. Some have only one control channel; others have multiple control channels. Some take
propagation delay into account; others do not. Some make tuning time an explicit part of the
model; others ignore it. The protocols also differ in terms of processing complexity,
throughput, and scalability. When a large number of frequencies are being used, the system is
sometimes called DWDM (Dense Wavelength Division Multiplexing). For more information
see (Bogineni et al., 1993; Chen, 1994; Goralski, 2001; Kartalopoulos, 1999; and Levine and
Akyildiz, 1995).

4.2.6 Wireless LAN Protocols

As the number of mobile computing and communication devices grows, so does the demand to
connect them to the outside world. Even the very first mobile telephones had the ability to
connect to other telephones. The first portable computers did not have this capability, but soon
afterward, modems became commonplace on notebook computers. To go on-line, these
computers had to be plugged into a telephone wall socket. Requiring a wired connection to the
fixed network meant that the computers were portable, but not mobile.

To achieve true mobility, notebook computers need to use radio (or infrared) signals for
communication. In this manner, dedicated users can read and send e-mail while hiking or
boating. A system of notebook computers that communicate by radio can be regarded as a
wireless LAN, as we discussed in Sec. 1.5.4. These LANs have somewhat different properties
than conventional LANs and require special MAC sublayer protocols. In this section we will
examine some of these protocols. More information about wireless LANs can be found in
(Geier, 2002; and O'Hara and Petrick, 1999).



A common configuration for a wireless LAN is an office building with base stations (also called
access points) strategically placed around the building. All the base stations are wired together
using copper or fiber. If the transmission power of the base stations and notebooks is adjusted
to have a range of 3 or 4 meters, then each room becomes a single cell and the entire building
becomes a large cellular system, as in the traditional cellular telephony systems we studied in
Chap. 2. Unlike cellular telephone systems, each cell has only one channel, covering the entire
available bandwidth and covering all the stations in its cell. Typically, its bandwidth is 11 to 54
Mbps.

In our discussions below, we will make the simplifying assumption that all radio transmitters
have some fixed range. When a receiver is within range of two active transmitters, the
resulting signal will generally be garbled and useless, in other words, we will not consider
CDMA-type systems further in this discussion. It is important to realize that in some wireless
LANSs, not all stations are within range of one another, which leads to a variety of
complications. Furthermore, for indoor wireless LANs, the presence of walls between stations
can have a major impact on the effective range of each station.

A naive approach to using a wireless LAN might be to try CSMA: just listen for other
transmissions and only transmit if no one else is doing so. The trouble is, this protocol is not
really appropriate because what matters is interference at the receiver, not at the sender. To
see the nature of the problem, consider Fig. 4-11, where four wireless stations are illustrated.
For our purposes, it does not matter which are base stations and which are notebooks. The
radio range is such that A and B are within each other's range and can potentially interfere
with one another. C can also potentially interfere with both B and D, but not with A.

Figure 4-11. A wireless LAN. (a) A transmitting. (b) B transmitting.
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First consider what happens when A is transmitting to B, as depicted in Fig. 4-11(a). If C
senses the medium, it will not hear A because A is out of range, and thus falsely conclude that
it can transmit to B. If C does start transmitting, it will interfere at B, wiping out the frame
from A. The problem of a station not being able to detect a potential competitor for the
medium because the competitor is too far away is called the hidden station problem.

Now let us consider the reverse situation: B transmitting to A, as shown in Fig. 4-11(b). If C
senses the medium, it will hear an ongoing transmission and falsely conclude that it may not
send to D, when in fact such a transmission would cause bad reception only in the zone
between B and C, where neither of the intended receivers is located. This is called the
exposed station problem.

The problem is that before starting a transmission, a station really wants to know whether
there is activity around the receiver. CSMA merely tells it whether there is activity around the
station sensing the carrier. With a wire, all signals propagate to all stations so only one
transmission can take place at once anywhere in the system. In a system based on short-
range radio waves, multiple transmissions can occur simultaneously if they all have different
destinations and these destinations are out of range of one another.

Another way to think about this problem is to imagine an office building in which every
employee has a wireless notebook computer. Suppose that Linda wants to send a message to
Milton. Linda's computer senses the local environment and, detecting no activity, starts
sending. However, there may still be a collision in Milton's office because a third party may



currently be sending to him from a location so far from Linda that her computer could not
detect it.

MACA and MACAW

An early protocol designed for wireless LANs is MACA (Multiple Access with Collision
Avoidance) (Karn, 1990). The basic idea behind it is for the sender to stimulate the receiver
into outputting a short frame, so stations nearby can detect this transmission and avoid
transmitting for the duration of the upcoming (large) data frame. MACA is illustrated in Fig. 4-
12.

Figure 4-12. The MACA protocol. (a) A sending an RTS to B. (b) B
responding with a CTS to A.
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Let us now consider how A sends a frame to B. A starts by sending an RTS (Request To
Send) frame to B, as shown in Fig. 4-12(a). This short frame (30 bytes) contains the length of
the data frame that will eventually follow. Then B replies with a CTS (Clear to Send) frame,
as shown in Fig. 4-12(b). The CTS frame contains the data length (copied from the RTS
frame). Upon receipt of the CTS frame, A begins transmission.

Now let us see how stations overhearing either of these frames react. Any station hearing the
RTS is clearly close to A and must remain silent long enough for the CTS to be transmitted
back to A without conflict. Any station hearing the CTS is clearly close to B and must remain
silent during the upcoming data transmission, whose length it can tell by examining the CTS
frame.

In Fig. 4-12, C is within range of A but not within range of B. Therefore, it hears the RTS from
A but not the CTS from B. As long as it does not interfere with the CTS, it is free to transmit
while the data frame is being sent. In contrast, D is within range of B but not A. It does not
hear the RTS but does hear the CTS. Hearing the CTS tips it off that it is close to a station that
is about to receive a frame, so it defers sending anything until that frame is expected to be
finished. Station E hears both control messages and, like D, must be silent until the data frame
is complete.

Despite these precautions, collisions can still occur. For example, B and C could both send RTS
frames to A at the same time. These will collide and be lost. In the event of a collision, an
unsuccessful transmitter (i.e., one that does not hear a CTS within the expected time interval)
waits a random amount of time and tries again later. The algorithm used is binary exponential
backoff, which we will study when we come to Ethernet.

Based on simulation studies of MACA, Bharghavan et al. (1994) fine tuned MACA to improve its
performance and renamed their new protocol MACAW (MACA for Wireless). To start with,



they noticed that without data link layer acknowledgements, lost frames were not
retransmitted until the transport layer noticed their absence, much later. They solved this
problem by introducing an ACK frame after each successful data frame. They also observed
that CSMA has some use, namely, to keep a station from transmitting an RTS at the same
time another nearby station is also doing so to the same destination, so carrier sensing was
added. In addition, they decided to run the backoff algorithm separately for each data stream
(source-destination pair), rather than for each station. This change improves the fairness of
the protocol. Finally, they added a mechanism for stations to exchange information about
congestion and a way to make the backoff algorithm react less violently to temporary
problems, to improve system performance.

4.3 Ethernet

We have now finished our general discussion of channel allocation protocols in the abstract, so
it is time to see how these principles apply to real systems, in particular, LANs. As discussed in
Sec. 1.5.3, the IEEE has standardized a number of local area networks and metropolitan area
networks under the name of IEEE 802. A few have survived but many have not, as we saw in
Fig. 1-38. Some people who believe in reincarnation think that Charles Darwin came back as a
member of the IEEE Standards Association to weed out the unfit. The most important of the
survivors are 802.3 (Ethernet) and 802.11 (wireless LAN). With 802.15 (Bluetooth) and
802.16 (wireless MAN), it is too early to tell. Please consult the 5th edition of this book to find
out. Both 802.3 and 802.11 have different physical layers and different MAC sublayers but
converge on the same logical link control sublayer (defined in 802.2), so they have the same
interface to the network layer.

We introduced Ethernet in Sec. 1.5.3 and will not repeat that material here. Instead we will
focus on the technical details of Ethernet, the protocols, and recent developments in high-
speed (gigabit) Ethernet. Since Ethernet and IEEE 802.3 are identical except for two minor
differences that we will discuss shortly, many people use the terms "Ethernet" and "IEEE
802.3" interchangeably, and we will do so, too. For more information about Ethernet, see
(Breyer and Riley, 1999 ; Seifert, 1998; and Spurgeon, 2000).

4.3.1 Ethernet Cabling

Since the name "Ethernet" refers to the cable (the ether), let us start our discussion there.
Four types of cabling are commonly used, as shown in Fig. 4-13.

Figure 4-13. The most common kinds of Ethernet cabling.

Name Cable _ Max. seq. _ Nodes/seq. _ Advantages
10Bases Thick coax _ 500 m _ 100 _ Criginal cable; now obsolete
10Base2 | Thincoax = 185m 30 Nohub needed

10Base-T | Twisted pair  100m 1024 | Cheapest system

10Base-F | Fiber optics 2000 m 1024 Best between buildings

Historically, 10Base5 cabling, popularly called thick Ethernet, came first. It resembles a
yellow garden hose, with markings every 2.5 meters to show where the taps go. (The 802.3
standard does not actually require the cable to be yellow, but it does suggest it.) Connections
to it are generally made using vampire taps, in which a pin is very carefully forced halfway
into the coaxial cable's core. The notation 10Base5 means that it operates at 10 Mbps, uses
baseband signaling, and can support segments of up to 500 meters. The first number is the
speed in Mbps. Then comes the word "Base" (or sometimes "BASE") to indicate baseband
transmission. There used to be a broadband variant, 10Broad36, but it never caught on in the
marketplace and has since vanished. Finally, if the medium is coax, its length is given rounded
to units of 100 m after "Base."



Historically, the second cable type was 10Base2, or thin Ethernet, which, in contrast to the
garden-hose-like thick Ethernet, bends easily. Connections to it are made using industry-
standard BNC connectors to form T junctions, rather than using vampire taps. BNC connectors
are easier to use and more reliable. Thin Ethernet is much cheaper and easier to install, but it
can run for only 185 meters per segment, each of which can handle only 30 machines.

Detecting cable breaks, excessive length, bad taps, or loose connectors can be a major
problem with both media. For this reason, techniques have been developed to track them
down. Basically, a pulse of known shape is injected into the cable. If the pulse hits an obstacle
or the end of the cable, an echo will be generated and sent back. By carefully timing the
interval between sending the pulse and receiving the echo, it is possible to localize the origin of
the echo. This technique is called time domain reflectometry.

The problems associated with finding cable breaks drove systems toward a different kind of
wiring pattern, in which all stations have a cable running to a central hub in which they are all
connected electrically (as if they were soldered together). Usually, these wires are telephone
company twisted pairs, since most office buildings are already wired this way, and normally
plenty of spare pairs are available. This scheme is called 10Base-T. Hubs do not buffer
incoming traffic. We will discuss an improved version of this idea (switches), which do buffer
incoming traffic later in this chapter.

These three wiring schemes are illustrated in Fig. 4-14. For 10Base5, a transceiver is
clamped securely around the cable so that its tap makes contact with the inner core. The
transceiver contains the electronics that handle carrier detection and collision detection. When
a collision is detected, the transceiver also puts a special invalid signal on the cable to ensure
that all other transceivers also realize that a collision has occurred.

Figure 4-14. Three kinds of Ethernet cabling. (a) 10Base5. (b)
10Base2. (c) 10Base-T.
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With 10Baseb, a transceiver cable or drop cable connects the transceiver to an interface
board in the computer. The transceiver cable may be up to 50 meters long and contains five
individually shielded twisted pairs. Two of the pairs are for data in and data out, respectively.
Two more are for control signals in and out. The fifth pair, which is not always used, allows the
computer to power the transceiver electronics. Some transceivers allow up to eight nearby
computers to be attached to them, to reduce the number of transceivers needed.

The transceiver cable terminates on an interface board inside the computer. The interface
board contains a controller chip that transmits frames to, and receives frames from, the
transceiver. The controller is responsible for assembling the data into the proper frame format,
as well as computing checksums on outgoing frames and verifying them on incoming frames.



Some controller chips also manage a pool of buffers for incoming frames, a queue of buffers to
be transmitted, direct memory transfers with the host computers, and other aspects of
network management.

With 10Base2, the connection to the cable is just a passive BNC T-junction connector. The
transceiver electronics are on the controller board, and each station always has its own
transceiver.

With 10Base-T, there is no shared cable at all, just the hub (a box full of electronics) to which
each station is connected by a dedicated (i.e., not shared) cable. Adding or removing a station
is simpler in this configuration, and cable breaks can be detected easily. The disadvantage of
10Base-T is that the maximum cable run from the hub is only 100 meters, maybe 200 meters
if very high quality category 5 twisted pairs are used. Nevertheless, 10Base-T quickly became
dominant due to its use of existing wiring and the ease of maintenance that it offers. A faster
version of 10Base-T (100Base-T) will be discussed later in this chapter.

A fourth cabling option for Ethernet is 10Base-F, which uses fiber optics. This alternative is
expensive due to the cost of the connectors and terminators, but it has excellent noise
immunity and is the method of choice when running between buildings or widely-separated
hubs. Runs of up to km are allowed. It also offers good security since wiretapping fiber is much
more difficult than wiretapping copper wire.

Figure 4-15 shows different ways of wiring a building. In Fig. 4-15(a), a single cable is snaked
from room to room, with each station tapping into it at the nearest point. In Fig. 4-15(b), a
vertical spine runs from the basement to the roof, with horizontal cables on each floor
connected to the spine by special amplifiers (repeaters). In some buildings, the horizontal
cables are thin and the backbone is thick. The most general topology is the tree, as in Fig. 4-
15(c), because a network with two paths between some pairs of stations would suffer from
interference between the two signals.

Figure 4-15. Cable topologies. (a) Linear. (b) Spine. (c) Tree. (d)
Segmented.
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Each version of Ethernet has a maximum cable length per segment. To allow larger networks,
multiple cables can be connected by repeaters, as shown in Fig. 4-15(d). A repeater is a
physical layer device. It receives, amplifies (regenerates), and retransmits signals in both
directions. As far as the software is concerned, a series of cable segments connected by
repeaters is no different from a single cable (except for some delay introduced by the
repeaters). A system may contain multiple cable segments and multiple repeaters, but no two
transceivers may be more than 2.5 km apart and no path between any two transceivers may
traverse more than four repeaters.



4.3.2 Manchester Encoding

None of the versions of Ethernet uses straight binary encoding with O volts for a O bit and 5
volts for a 1 bit because it leads to ambiguities. If one station sends the bit string 0001000,
others might falsely interpret it as 210000000 or 01000000 because they cannot tell the
difference between an idle sender (O volts) and a 0 bit (O volts). This problem can be solved by
using +1 volts for a 1 and -1 volts for a 0, but there is still the problem of a receiver sampling
the signal at a slightly different frequency than the sender used to generate it. Different clock
speeds can cause the receiver and sender to get out of synchronization about where the bit
boundaries are, especially after a long run of consecutive Os or a long run of consecutive 1s.

What is needed is a way for receivers to unambiguously determine the start, end, or middle of
each bit without reference to an external clock. Two such approaches are called Manchester
encoding and differential Manchester encoding. With Manchester encoding, each bit
period is divided into two equal intervals. A binary 1 bit is sent by having the voltage set high
during the first interval and low in the second one. A binary O is just the reverse: first low and
then high. This scheme ensures that every bit period has a transition in the middle, making it
easy for the receiver to synchronize with the sender. A disadvantage of Manchester encoding is
that it requires twice as much bandwidth as straight binary encoding because the pulses are
half the width. For example, to send data at 10 Mbps, the signal has to change 20 million
times/sec. Manchester encoding is shown in Fig. 4-16(b).

Figure 4-16. (a) Binary encoding. (b) Manchester encoding. (¢)
Differential Manchester encoding.
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Differential Manchester encoding, shown in Fig. 4-16(c), is a variation of basic Manchester
encoding. In it, a 1 bit is indicated by the absence of a transition at the start of the interval. A
0 bit is indicated by the presence of a transition at the start of the interval. In both cases,
there is a transition in the middle as well. The differential scheme requires more complex
equipment but offers better noise immunity. All Ethernet systems use Manchester encoding
due to its simplicity. The high signal is + 0.85 volts and the low signal is - 0.85 volts, giving a
DC value of 0 volts. Ethernet does not use differential Manchester encoding, but other LANs
(e.g., the 802.5 token ring) do use it.

4.3.3 The Ethernet MAC Sublayer Protocol

The original DIX (DEC, Intel, Xerox) frame structure is shown in Fig. 4-17(a). Each frame
starts with a Preamble of 8 bytes, each containing the bit pattern 10101010. The Manchester
encoding of this pattern produces a 10-MHz square wave for 6.4 pysec to allow the receiver's
clock to synchronize with the sender's. They are required to stay synchronized for the rest of
the frame, using the Manchester encoding to keep track of the bit boundaries.

Figure 4-17. Frame formats. (a) DIX Ethernet. (b) IEEE 802.3.
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The frame contains two addresses, one for the destination and one for the source. The
standard allows 2-byte and 6-byte addresses, but the parameters defined for the 10-Mbps
baseband standard use only the 6-byte addresses. The high-order bit of the destination
address is a O for ordinary addresses and 1 for group addresses. Group addresses allow
multiple stations to listen to a single address. When a frame is sent to a group address, all the
stations in the group receive it. Sending to a group of stations is called multicast. The address
consisting of all 1 bits is reserved for broadcast. A frame containing all 1s in the destination
field is accepted by all stations on the network. The difference between multicast and
broadcast is important enough to warrant repeating. A multicast frame is sent to a selected
group of stations on the Ethernet; a broadcast frame is sent to all stations on the Ethernet.
Multicast is more selective, but involves group management. Broadcasting is coarser but does
not require any group management.

Another interesting feature of the addressing is the use of bit 46 (adjacent to the high-order
bit) to distinguish local from global addresses. Local addresses are assigned by each network
administrator and have no significance outside the local network. Global addresses, in
contrast, are assigned centrally by IEEE to ensure that no two stations anywhere in the world
have the same global address. With 48 - 2 = 46 bits available, there are about 7 x 10* global
addresses. The idea is that any station can uniquely address any other station by just giving
the right 48-bit number. It is up to the network layer to figure out how to locate the
destination.

Next comes the Type field, which tells the receiver what to do with the frame. Multiple
network-layer protocols may be in use at the same time on the same machine, so when an
Ethernet frame arrives, the kernel has to know which one to hand the frame to. The Type field
specifies which process to give the frame to.

Next come the data, up to 1500 bytes. This limit was chosen somewhat arbitrarily at the time
the DIX standard was cast in stone, mostly based on the fact that a transceiver needs enough
RAM to hold an entire frame and RAM was expensive in 1978. A larger upper limit would have
meant more RAM, hence a more expensive transceiver.

In addition to there being a maximum frame length, there is also a minimum frame length.
While a data field of O bytes is sometimes useful, it causes a problem. When a transceiver
detects a collision, it truncates the current frame, which means that stray bits and pieces of
frames appear on the cable all the time. To make it easier to distinguish valid frames from
garbage, Ethernet requires that valid frames must be at least 64 bytes long, from destination
address to checksum, including both. If the data portion of a frame is less than 46 bytes, the
Pad field is used to fill out the frame to the minimum size.

Another (and more important) reason for having a minimum length frame is to prevent a
station from completing the transmission of a short frame before the first bit has even reached
the far end of the cable, where it may collide with another frame. This problem is illustrated in
Fig. 4-18. At time O, station A, at one end of the network, sends off a frame. Let us call the
propagation time for this frame to reach the other end t. Just before the frame gets to the
other end (i.e., at time t-¢), the most distant station, B, starts transmitting. When B detects
that it is receiving more power than it is putting out, it knows that a collision has occurred, so
it aborts its transmission and generates a 48-bit noise burst to warn all other stations. In other
words, it jams the ether to make sure the sender does not miss the collision. At about time 2z,



the sender sees the noise burst and aborts its transmission, too. It then waits a random time
before trying again.

Figure 4-18. Collision detection can take as long as 2.
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If a station tries to transmit a very short frame, it is conceivable that a collision occurs, but the
transmission completes before the noise burst gets back at 2t. The sender will then incorrectly
conclude that the frame was successfully sent. To prevent this situation from occurring, all
frames must take more than 2t to send so that the transmission is still taking place when the
noise burst gets back to the sender. For a 10-Mbps LAN with a maximum length of 2500
meters and four repeaters (from the 802.3 specification), the round-trip time (including time
to propagate through the four repeaters) has been determined to be nearly 50 psec in the
worst case, including the time to pass through the repeaters, which is most certainly not zero.
Therefore, the minimum frame must take at least this long to transmit. At 10 Mbps, a bit takes
100 nsec, so 500 bits is the smallest frame that is guaranteed to work. To add some margin of
safety, this number was rounded up to 512 bits or 64 bytes. Frames with fewer than 64 bytes
are padded out to 64 bytes with the Pad field.

As the network speed goes up, the minimum frame length must go up or the maximum cable
length must come down, proportionally. For a 2500-meter LAN operating at 1 Gbps, the
minimum frame size would have to be 6400 bytes. Alternatively, the minimum frame size
could be 640 bytes and the maximum distance between any two stations 250 meters. These
restrictions are becoming increasingly painful as we move toward multigigabit networks.

The final Ethernet field is the Checksum. It is effectively a 32-bit hash code of the data. If
some data bits are erroneously received (due to noise on the cable), the checksum will almost
certainly be wrong and the error will be detected. The checksum algorithm is a cyclic
redundancy check (CRC) of the kind discussed in Chap. 3. It just does error detection, not
forward error correction.

When IEEE standardized Ethernet, the committee made two changes to the DIX format, as
shown in Fig. 4-17(b). The first one was to reduce the preamble to 7 bytes and use the last
byte for a Start of Frame delimiter, for compatibility with 802.4 and 802.5. The second one
was to change the Type field into a Length field. Of course, now there was no way for the
receiver to figure out what to do with an incoming frame, but that problem was handled by the
addition of a small header to the data portion itself to provide this information. We will discuss
the format of the data portion when we come to logical link control later in this chapter.

Unfortunately, by the time 802.3 was published, so much hardware and software for DIX
Ethernet was already in use that few manufacturers and users were enthusiastic about
converting the Type field into a Length field. In 1997 IEEE threw in the towel and said that
both ways were fine with it. Fortunately, all the Type fields in use before 1997 were greater
than 1500. Consequently, any number there less than or equal to 1500 can be interpreted as
Length, and any number greater than 1500 can be interpreted as Type. Now IEEE can



maintain that everyone is using its standard and everybody else can keep on doing what they
were already doing without feeling guilty about it.

4.3.4 The Binary Exponential Backoff Algorithm

Let us now see how randomization is done when a collision occurs. The model is that of Fig. 4-
5. After a collision, time is divided into discrete slots whose length is equal to the worst-case
round-trip propagation time on the ether (2t). To accommodate the longest path allowed by
Ethernet, the slot time has been set to 512 bit times, or 51.2 psec as mentioned above.

After the first collision, each station waits either O or 1 slot times before trying again. If two
stations collide and each one picks the same random number, they will collide again. After the
second collision, each one picks either O, 1, 2, or 3 at random and waits that number of slot
times. If a third collision occurs (the probability of this happening is 0.25), then the next time
the number of slots to wait is chosen at random from the interval O to 23 - 1.

In general, after i collisions, a random number between 0 and 2' - 1 is chosen, and that
number of slots is skipped. However, after ten collisions have been reached, the randomization
interval is frozen at a maximum of 1023 slots. After 16 collisions, the controller throws in the
towel and reports failure back to the computer. Further recovery is up to higher layers.

This algorithm, called binary exponential backoff, was chosen to dynamically adapt to the
number of stations trying to send. If the randomization interval for all collisions was 1023, the
chance of two stations colliding for a second time would be negligible, but the average wait
after a collision would be hundreds of slot times, introducing significant delay. On the other
hand, if each station always delayed for either zero or one slots, then if 100 stations ever tried
to send at once, they would collide over and over until 99 of them picked 1 and the remaining
station picked 0. This might take years. By having the randomization interval grow
exponentially as more and more consecutive collisions occur, the algorithm ensures a low
delay when only a few stations collide but also ensures that the collision is resolved in a
reasonable interval when many stations collide. Truncating the backoff at 1023 keeps the
bound from growing too large.

As described so far, CSMA/CD provides no acknowledgements. Since the mere absence of
collisions does not guarantee that bits were not garbled by noise spikes on the cable, for
reliable communication the destination must verify the checksum, and if correct, send back an
acknowledgement frame to the source. Normally, this acknowledgement would be just another
frame as far as the protocol is concerned and would have to fight for channel time just like a
data frame. However, a simple modification to the contention algorithm would allow speedy
confirmation of frame receipt (Tokoro and Tamaru, 1977). All that would be needed is to
reserve the first contention slot following successful transmission for the destination station.
Unfortunately, the standard does not provide for this possibility.

4.3.5 Ethernet Performance

Now let us briefly examine the performance of Ethernet under conditions of heavy and
constant load, that is, k stations always ready to transmit. A rigorous analysis of the binary
exponential backoff algorithm is complicated. Instead, we will follow Metcalfe and Boggs
(1976) and assume a constant retransmission probability in each slot. If each station transmits
during a contention slot with probability p, the probability A that some station acquires the
channel in that slot is

Equation 4

A =kp(l =p)t-!



A is maximized when p = 1/k, with A ==31/e as k ==* oo . The probability that the contention
interval has exactly j slots in it is A(1 - A)Y ~*, so the mean number of slots per contention is
given by

=3

TiA(l-AY = 1
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Since each slot has a duration 2t, the mean contention interval, w, is 2t/A. Assuming optimal
p, the mean number of contention slots is never more than e, so w is at most 2te =s5.4r.

If the mean frame takes P sec to transmit, when many stations have frames to send,

Equation 4

P

Channel efficiency = —————
nnel efficiency = o———

Here we see where the maximum cable distance between any two stations enters into the
performance figures, giving rise to topologies other than that of Fig. 4-15(a). The longer the
cable, the longer the contention interval. This observation is why the Ethernet standard
specifies a maximum cable length.

It is instructive to formulate Eq. (4-6) in terms of the frame length, F, the network bandwidth,
B, the cable length, L, and the speed of signal propagation, c, for the optimal case of e
contention slots per frame. With P = F/B, Eq. (4-6) becomes

Equation 4

Channel efficiency = 1+ 2Ble/cF
ok

When the second term in the denominator is large, network efficiency will be low. More
specifically, increasing network bandwidth or distance (the BL product) reduces efficiency for a
given frame size. Unfortunately, much research on network hardware is aimed precisely at
increasing this product. People want high bandwidth over long distances (fiber optic MANSs, for
example), which suggests that Ethernet implemented in this manner may not be the best
system for these applications. We will see other ways of implementing Ethernet when we come
to switched Ethernet later in this chapter.

In Fig. 4-19, the channel efficiency is plotted versus number of ready stations for 2t=51.2 usec
and a data rate of 10 Mbps, using Eq. (4-7). With a 64-byte slot time, it is not surprising that
64-byte frames are not efficient. On the other hand, with 1024-byte frames and an asymptotic
value of e 64-byte slots per contention interval, the contention period is 174 bytes long and
the efficiency is 0.85.



Figure 4-19. Efficiency of Ethernet at 10 Mbps with 512-bit slot times.
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To determine the mean number of stations ready to transmit under conditions of high load, we
can use the following (crude) observation. Each frame ties up the channel for one contention
period and one frame transmission time, for a total of P + w sec. The number of frames per
second is therefore 1/(P + w). If each station generates frames at a mean rate of A
frames/sec, then when the system is in state k, the total input rate of all unblocked stations
combined is ki frames/sec. Since in equilibrium the input and output rates must be identical,
we can equate these two expressions and solve for k. (Notice that w is a function of k.) A more
sophisticated analysis is given in (Bertsekas and Gallager, 1992).

It is probably worth mentioning that there has been a large amount of theoretical performance
analysis of Ethernet (and other networks). Virtually all of this work has assumed that traffic is
Poisson. As researchers have begun looking at real data, it now appears that network traffic is
rarely Poisson, but self-similar (Paxson and Floyd, 1994; and Willinger et al., 1995). What this
means is that averaging over long periods of time does not smooth out the traffic. The average
number of frames in each minute of an hour has as much variance as the average number of
frames in each second of a minute. The consequence of this discovery is that most models of
network traffic do not apply to the real world and should be taken with a grain (or better yet, a
metric ton) of salt.

4.3.6 Switched Ethernet

As more and more stations are added to an Ethernet, the traffic will go up. Eventually, the LAN
will saturate. One way out is to go to a higher speed, say, from 10 Mbps to 100 Mbps. But with
the growth of multimedia, even a 100-Mbps or 1-Gbps Ethernet can become saturated.

Fortunately, there is an additional way to deal with increased load: switched Ethernet, as
shown in Fig. 4-20. The heart of this system is a switch containing a high-speed backplane
and room for typically 4 to 32 plug-in line cards, each containing one to eight connectors. Most
often, each connector has a 10Base-T twisted pair connection to a single host computer.

Figure 4-20. A simple example of switched Ethernet.
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When a station wants to transmit an Ethernet frame, it outputs a standard frame to the switch.
The plug-in card getting the frame may check to see if it is destined for one of the other
stations connected to the same card. If so, the frame is copied there. If not, the frame is sent
over the high-speed backplane to the destination station's card. The backplane typically runs
at many Gbps, using a proprietary protocol.

What happens if two machines attached to the same plug-in card transmit frames at the same
time? It depends on how the card has been constructed. One possibility is for all the ports on
the card to be wired together to form a local on-card LAN. Collisions on this on-card LAN will
be detected and handled the same as any other collisions on a CSMA/CD network—with
retransmissions using the binary exponential backoff algorithm. With this kind of plug-in card,
only one transmission per card is possible at any instant, but all the cards can be transmitting
in parallel. With this design, each card forms its own collision domain, independent of the
others. With only one station per collision domain, collisions are impossible and performance is
improved.

With the other kind of plug-in card, each input port is buffered, so incoming frames are stored
in the card's on-board RAM as they arrive. This design allows all input ports to receive (and
transmit) frames at the same time, for parallel, full-duplex operation, something not possible
with CSMA/CD on a single channel. Once a frame has been completely received, the card can
then check to see if the frame is destined for another port on the same card or for a distant
port. In the former case, it can be transmitted directly to the destination. In the latter case, it
must be transmitted over the backplane to the proper card. With this design, each port is a
separate collision domain, so collisions do not occur. The total system throughput can often be
increased by an order of magnitude over 10Base5, which has a single collision domain for the
entire system.

Since the switch just expects standard Ethernet frames on each input port, it is possible to use
some of the ports as concentrators. In Fig. 4-20, the port in the upper-right corner is
connected not to a single station, but to a 12-port hub. As frames arrive at the hub, they
contend for the ether in the usual way, including collisions and binary backoff. Successful
frames make it to the switch and are treated there like any other incoming frames: they are
switched to the correct output line over the high-speed backplane. Hubs are cheaper than
switches, but due to falling switch prices, they are rapidly becoming obsolete. Nevertheless,
legacy hubs still exist.

4.3.7 Fast Ethernet

At first, 10 Mbps seemed like heaven, just as 1200-bps modems seemed like heaven to the
early users of 300-bps acoustic modems. But the novelty wore off quickly. As a kind of
corollary to Parkinson's Law (""Work expands to fill the time available for its completion™), it
seemed that data expanded to fill the bandwidth available for their transmission. To pump up
the speed, various industry groups proposed two new ring-based optical LANs. One was called



FDDI (Fiber Distributed Data Interface) and the other was called Fibre Channel le. To
make a long story short, while both were used as backbone networks, neither one made the
breakthrough to the desktop. In both cases, the station management was too complicated,
which led to complex chips and high prices. The lesson that should have been learned here
was KISS (Keep It Simple, Stupid).

L") 1t is called "fibre channel” and not "fiber channel because the document editor was British.

In any event, the failure of the optical LANs to catch fire left a gap for garden-variety Ethernet
at speeds above 10 Mbps. Many installations needed more bandwidth and thus had numerous
10-Mbps LANs connected by a maze of repeaters, bridges, routers, and gateways, although to
the network managers it sometimes felt that they were being held together by bubble gum and
chicken wire.

It was in this environment that IEEE reconvened the 802.3 committee in 1992 with instructions
to come up with a faster LAN. One proposal was to keep 802.3 exactly as it was, but just make
it go faster. Another proposal was to redo it totally to give it lots of new features, such as real-
time traffic and digitized voice, but just keep the old name (for marketing reasons). After some
wrangling, the committee decided to keep 802.3 the way it was, but just make it go faster.
The people behind the losing proposal did what any computer-industry people would have
done under these circumstances—they stomped off and formed their own committee and
standardized their LAN anyway (eventually as 802.12). It flopped miserably.

The 802.3 committee decided to go with a souped-up Ethernet for three primary reasons:

1. The need to be backward compatible with existing Ethernet LANSs.
2. The fear that a new protocol might have unforeseen problems.
3. The desire to get the job done before the technology changed.

The work was done quickly (by standards committees' norms), and the result, 802.3u, was
officially approved by IEEE in June 1995. Technically, 802.3u is not a new standard, but an

addendum to the existing 802.3 standard (to emphasize its backward compatibility). Since

practically everyone calls it fast Ethernet, rather than 802.3u, we will do that, too.

The basic idea behind fast Ethernet was simple: keep all the old frame formats, interfaces, and
procedural rules, but just reduce the bit time from 100 nsec to 10 nsec. Technically, it would
have been possible to copy either 10Base-5 or 10Base-2 and still detect collisions on time by
just reducing the maximum cable length by a factor of ten. However, the advantages of
10Base-T wiring were so overwhelming that fast Ethernet is based entirely on this design.
Thus, all fast Ethernet systems use hubs and switches; multidrop cables with vampire taps or
BNC connectors are not permitted.

Nevertheless, some choices still had to be made, the most important being which wire types to
support. One contender was category 3 twisted pair. The argument for it was that practically
every office in the Western world has at least four category 3 (or better) twisted pairs running
from it to a telephone wiring closet within 100 meters. Sometimes two such cables exist. Thus,
using category 3 twisted pair would make it possible to wire up desktop computers using fast
Ethernet without having to rewire the building, an enormous advantage for many
organizations.

The main disadvantage of category 3 twisted pair is its inability to carry 200 megabaud signals
(100 Mbps with Manchester encoding) 100 meters, the maximum computer-to-hub distance
specified for 10Base-T (see Fig. 4-13). In contrast, category 5 twisted pair wiring can handle
100 meters easily, and fiber can go much farther. The compromise chosen was to allow all
three possibilities, as shown in Fig. 4-21, but to pep up the category 3 solution to give it the
additional carrying capacity needed.



Figure 4-21. The original fast Ethernet cabling.

Name Cable _ Max. segment _ Advantages
100Base-T4 | Twisted pair | 100m | Uses category 3 UTP
100Base-TX | Twisted pair | 100m - Full duplex at 100 Mbps (Cat 5 UTP)
100Base-FX | Fiber optics 2000 m Full duplex at 100 Mbps; long runs

The category 3 UTP scheme, called 100Base-T4, uses a signaling speed of 25 MHz, only 25
percent faster than standard Ethernet's 20 MHz (remember that Manchester encoding, as
shown in Fig. 4-16, requires two clock periods for each of the 10 million bits each second).
However, to achieve the necessary bandwidth, 100Base-T4 requires four twisted pairs. Since
standard telephone wiring for decades has had four twisted pairs per cable, most offices are
able to handle this. Of course, it means giving up your office telephone, but that is surely a
small price to pay for faster e-mail.

Of the four twisted pairs, one is always to the hub, one is always from the hub, and the other
two are switchable to the current transmission direction. To get the necessary bandwidth,
Manchester encoding is not used, but with modern clocks and such short distances, it is no
longer needed. In addition, ternary signals are sent, so that during a single clock period the
wire can contain a 0, a 1, or a 2. With three twisted pairs going in the forward direction and
ternary signaling, any one of 27 possible symbols can be transmitted, making it possible to
send 4 bits with some redundancy. Transmitting 4 bits in each of the 25 million clock cycles
per second gives the necessary 100 Mbps. In addition, there is always a 33.3-Mbps reverse
channel using the remaining twisted pair. This scheme, known as 8B/6T (8 bits map to 6
trits), is not likely to win any prizes for elegance, but it works with the existing wiring plant.

For category 5 wiring, the design, 100Base-TX, is simpler because the wires can handle clock
rates of 125 MHz. Only two twisted pairs per station are used, one to the hub and one from it.
Straight binary coding is not used; instead a scheme called used4B/5Bis It is taken from FDDI
and compatible with it. Every group of five clock periods, each containing one of two signal
values, yields 32 combinations. Sixteen of these combinations are used to transmit the four bit
groups 0000, 0001, 0010, ..., 1111. Some of the remaining 16 are used for control purposes
such as marking frames boundaries. The combinations used have been carefully chosen to
provide enough transitions to maintain clock synchronization. The 100Base-TX system is full
duplex; stations can transmit at 100 Mbps and receive at 100 Mbps at the same time. Often
100Base-TX and 100Base-T4 are collectively referred to as 100Base-T.

The last option, 100Base-FX, uses two strands of multimode fiber, one for each direction, so
it, too, is full duplex with 100 Mbps in each direction. In addition, the distance between a
station and the hub can be up to 2 km.

In response to popular demand, in 1997 the 802 committee added a new cabling type,
100Base-T2, allowing fast Ethernet to run over two pairs of existing category 3 wiring.
However, a sophisticated digital signal processor is needed to handle the encoding scheme
required, making this option fairly expensive. So far, it is rarely used due to its complexity,
cost, and the fact that many office buildings have already been rewired with category 5 UTP.

Two kinds of interconnection devices are possible with 100Base-T: hubs and switches, as
shown in Fig. 4-20. In a hub, all the incoming lines (or at least all the lines arriving at one
plug-in card) are logically connected, forming a single collision domain. All the standard rules,
including the binary exponential backoff algorithm, apply, so the system works just like old-
fashioned Ethernet. In particular, only one station at a time can be transmitting. In other
words, hubs require half-duplex communication.

In a switch, each incoming frame is buffered on a plug-in line card and passed over a high-
speed backplane from the source card to the destination card if need be. The backplane has



not been standardized, nor does it need to be, since it is entirely hidden deep inside the
switch. If past experience is any guide, switch vendors will compete vigorously to produce ever
faster backplanes in order to improve system throughput. Because 100Base-FX cables are too
long for the normal Ethernet collision algorithm, they must be connected to switches, so each
one is a collision domain unto itself. Hubs are not permitted with 100Base-FX.

As a final note, virtually all switches can handle a mix of 10-Mbps and 100-Mbps stations, to
make upgrading easier. As a site acquires more and more 100-Mbps workstations, all it has to
do is buy the necessary number of new line cards and insert them into the switch. In fact, the
standard itself provides a way for two stations to automatically negotiate the optimum speed
(10 or 100 Mbps) and duplexity (half or full). Most fast Ethernet products use this feature to
autoconfigure themselves.

4.3.8 Gigabit Ethernet

The ink was barely dry on the fast Ethernet standard when the 802 committee began working
on a yet faster Ethernet (1995). It was quickly dubbed gigabit Ethernet and was ratified by
IEEE in 1998 under the name 802.3z. This identifier suggests that gigabit Ethernet is going to
be the end of the line unless somebody quickly invents a new letter after z. Below we will
discuss some of the key features of gigabit Ethernet. More information can be found in
(Seifert, 1998).

The 802.3z committee's goals were essentially the same as the 802.3u committee's goals:
make Ethernet go 10 times faster yet remain backward compatible with all existing Ethernet
standards. In particular, gigabit Ethernet had to offer unacknowledged datagram service with
both unicast and multicast, use the same 48-bit addressing scheme already in use, and
maintain the same frame format, including the minimum and maximum frame sizes. The final
standard met all these goals.

All configurations of gigabit Ethernet are point-to-point rather than multidrop as in the original
10 Mbps standard, now honored as classic Ethernet. In the simplest gigabit Ethernet
configuration, illustrated in Fig. 4-22(a), two computers are directly connected to each other.
The more common case, however, is having a switch or a hub connected to multiple computers
and possibly additional switches or hubs, as shown in Fig. 4-22(b). In both configurations each
individual Ethernet cable has exactly two devices on it, no more and no fewer.

Figure 4-22. (a) A two-station Ethernet. (b) A multistation Ethernet.
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Gigabit Ethernet supports two different modes of operation: full-duplex mode and half-duplex
mode. The "normal™ mode is full-duplex mode, which allows traffic in both directions at the
same time. This mode is used when there is a central switch connected to computers (or other
switches) on the periphery. In this configuration, all lines are buffered so each computer and
switch is free to send frames whenever it wants to. The sender does not have to sense the
channel to see if anybody else is using it because contention is impossible. On the line between



a computer and a switch, the computer is the only possible sender on that line to the switch
and the transmission succeeds even if the switch is currently sending a frame to the computer
(because the line is full duplex). Since no contention is possible, the CSMA/CD protocol is not
used, so the maximum length of the cable is determined by signal strength issues rather than
by how long it takes for a noise burst to propagate back to the sender in the worst case.
Switches are free to mix and match speeds. Autoconfiguration is supported just as in fast
Ethernet.

The other mode of operation, half-duplex, is used when the computers are connected to a hub
rather than a switch. A hub does not buffer incoming frames. Instead, it electrically connects
all the lines internally, simulating the multidrop cable used in classic Ethernet. In this mode,
collisions are possible, so the standard CSMA/CD protocol is required. Because a minimum
(i.e., 64-byte) frame can now be transmitted 100 times faster than in classic Ethernet, the
maximum distance is 100 times less, or 25 meters, to maintain the essential property that the
sender is still transmitting when the noise burst gets back to it, even in the worst case. With a
2500-meter-long cable, the sender of a 64-byte frame at 1 Gbps would be long done before
the frame got even a tenth of the way to the other end, let alone to the end and back.

The 802.3z committee considered a radius of 25 meters to be unacceptable and added two
features to the standard to increase the radius. The first feature, called carrier extension,
essentially tells the hardware to add its own padding after the normal frame to extend the
frame to 512 bytes. Since this padding is added by the sending hardware and removed by the
receiving hardware, the software is unaware of it, meaning that no changes are needed to
existing software. Of course, using 512 bytes worth of bandwidth to transmit 46 bytes of user
data (the payload of a 64-byte frame) has a line efficiency of 9%.

The second feature, called frame bursting, allows a sender to transmit a concatenated
sequence of multiple frames in a single transmission. If the total burst is less than 512 bytes,
the hardware pads it again. If enough frames are waiting for transmission, this scheme is
highly efficient and preferred over carrier extension. These new features extend the radius of
the network to 200 meters, which is probably enough for most offices.

In all fairness, it is hard to imagine an organization going to the trouble of buying and
installing gigabit Ethernet cards to get high performance and then connecting the computers
with a hub to simulate classic Ethernet with all its collisions. While hubs are somewhat cheaper
than switches, gigabit Ethernet interface cards are still relatively expensive. To then economize
by buying a cheap hub and slash the performance of the new system is foolish. Still, backward
compatibility is sacred in the computer industry, so the 802.3z committee was required to put
it in.

Gigabit Ethernet supports both copper and fiber cabling, as listed in Fig. 4-23. Signaling at or
near 1 Gbps over fiber means that the light source has to be turned on and off in under 1
nsec. LEDs simply cannot operate this fast, so lasers are required. Two wavelengths are
permitted: 0.85 microns (Short) and 1.3 microns (Long). Lasers at 0.85 microns are cheaper
but do not work on single-mode fiber.

Figure 4-23. Gigabit Ethernet cabling.

Name | Cable Max. segment Advantages
1000Base-SX . Fiber optics 550m | Multimode fiber (50, 62.5 microns)
1000Base-LX . Fibaer optics S000m | Single (10 p) or multimode (50, 62.5 u)
1000Base-CX | 2 Pairs of STP 25 m | Shielded twisted pair
1000Base-T 4 Pairs of UTP 100m | Standard category 5 UTP

Three fiber diameters are permitted: 10, 50, and 62.5 microns. The first is for single mode and
the last two are for multimode. Not all six combinations are allowed, however, and the



maximum distance depends on the combination used. The numbers given in Fig. 4-23 are for
the best case. In particular, 5000 meters is only achievable with 1.3 micron lasers operating
over 10 micron fiber in single mode, but this is the best choice for campus backbones and is
expected to be popular, despite its being the most expensive choice.

The 1000Base-CX option uses short shielded copper cables. Its problem is that it is competing
with high-performance fiber from above and cheap UTP from below. It is unlikely to be used
much, if at all.

The last option is bundles of four category 5 UTP wires working together. Because so much of
this wiring is already installed, it is likely to be the poor man's gigabit Ethernet.

Gigabit Ethernet uses new encoding rules on the fibers. Manchester encoding at 1 Gbps would
require a 2 Gbaud signal, which was considered too difficult and also too wasteful of
bandwidth. Instead a new scheme, called 8B/10B, was chosen, based on fibre channel. Each
8-bit byte is encoded on the fiber as 10 bits, hence the name 8B/10B. Since there are 1024
possible output codewords for each input byte, some leeway was available in choosing which
codewords to allow. The following two rules were used in making the choices:

1. No codeword may have more than four identical bits in a row.
2. No codeword may have more than six 0s or six 1s.

These choices were made to keep enough transitions in the stream to make sure the receiver
stays in sync with the sender and also to keep the number of Os and 1s on the fiber as close to
equal as possible. In addition, many input bytes have two possible codewords assigned to
them. When the encoder has a choice of codewords, it always chooses the codeword that
moves in the direction of equalizing the number of Os and 1s transmitted so far. This emphasis
of balancing Os and 1s is needed to keep the DC component of the signal as low as possible to
allow it to pass through transformers unmodified. While computer scientists are not fond of
having the properties of transformers dictate their coding schemes, life is like that sometimes.

Gigabit Ethernets using 1000Base-T use a different encoding scheme since clocking data onto
copper wire in 1 nsec is too difficult. This solution uses four category 5 twisted pairs to allow
four symbols to be transmitted in parallel. Each symbol is encoded using one of five voltage
levels. This scheme allows a single symbol to encode 00, 01, 10, 11, or a special value for
control purposes. Thus, there are 2 data bits per twisted pair or 8 data bits per clock cycle. The
clock runs at 125 MHz, allowing 1-Gbps operation. The reason for allowing five voltage levels
instead of four is to have combinations left over for framing and control purposes.

A speed of 1 Gbps is quite fast. For example, if a receiver is busy with some other task for
even 1 msec and does not empty the input buffer on some line, up to 1953 frames may have
accumulated there in that 1 ms gap. Also, when a computer on a gigabit Ethernet is shipping
data down the line to a computer on a classic Ethernet, buffer overruns are very likely. As a
consequence of these two observations, gigabit Ethernet supports flow control (as does fast
Ethernet, although the two are different).

The flow control consists of one end sending a special control frame to the other end telling it
to pause for some period of time. Control frames are normal Ethernet frames containing a type
of Ox8808. The first two bytes of the data field give the command; succeeding bytes provide
the parameters, if any. For flow control, PAUSE frames are used, with the parameter telling
how long to pause, in units of the minimum frame time. For gigabit Ethernet, the time unit is
512 nsec, allowing for pauses as long as 33.6 msec.

As soon as gigabit Ethernet was standardized, the 802 committee got bored and wanted to get
back to work. IEEE told them to start on 10-gigabit Ethernet. After searching hard for a letter
to follow z, they abandoned that approach and went over to two-letter suffixes. They got to



work and that standard was approved by IEEE in 2002 as 802.3ae. Can 100-gigabit Ethernet
be far behind?

4.3.9 IEEE 802.2: Logical Link Control

It is now perhaps time to step back and compare what we have learned in this chapter with
what we studied in the previous one. In Chap. 3, we saw how two machines could
communicate reliably over an unreliable line by using various data link protocols. These
protocols provided error control (using acknowledgements) and flow control (using a sliding
window).

In contrast, in this chapter, we have not said a word about reliable communication. All that
Ethernet and the other 802 protocols offer is a best-efforts datagram service. Sometimes, this
service is adequate. For example, for transporting IP packets, no guarantees are required or
even expected. An IP packet can just be inserted into an 802 payload field and sent on its way.
If it gets lost, so be it.

Nevertheless, there are also systems in which an error-controlled, flow-controlled data link
protocol is desired. IEEE has defined one that can run on top of Ethernet and the other 802
protocols. In addition, this protocol, called LLC (Logical Link Control), hides the differences
between the various kinds of 802 networks by providing a single format and interface to the
network layer. This format, interface, and protocol are all closely based on the HDLC protocol
we studied in Chap. 3. LLC forms the upper half of the data link layer, with the MAC sublayer
below it, as shown in Fig. 4-24.

Figure 4-24. (a) Position of LLC. (b) Protocol formats.
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Typical usage of LLC is as follows. The network layer on the sending machine passes a packet
to LLC, using the LLC access primitives. The LLC sublayer then adds an LLC header, containing
sequence and acknowledgement numbers. The resulting structure is then inserted into the
payload field of an 802 frame and transmitted. At the receiver, the reverse process takes
place.

LLC provides three service options: unreliable datagram service, acknowledged datagram
service, and reliable connection-oriented service. The LLC header contains three fields: a
destination access point, a source access point, and a control field. The access points tell which
process the frame came from and where it is to be delivered, replacing the DIX Type field. The
control field contains sequence and acknowledgement numbers, very much in the style of
HDLC (see Fig. 3-24), but not identical to it. These fields are primarily used when a reliable
connection is needed at the data link level, in which case protocols similar to the ones
discussed in Chap. 3 would be used. For the Internet, best-efforts attempts to deliver IP
packets is sufficient, so no acknowledgements at the LLC level are required.



4.3.10 Retrospective on Ethernet

Ethernet has been around for over 20 years and has no serious competitors in sight, so it is
likely to be around for many years to come. Few CPU architectures, operating systems, or
programming languages have been king of the mountain for two decades going on three.
Clearly, Ethernet did something right. What?

Probably the main reason for its longevity is that Ethernet is simple and flexible. In practice,
simple translates into reliable, cheap, and easy to maintain. Once the vampire taps were
replaced by BNC connectors, failures became extremely rare. People hesitate to replace
something that works perfectly all the time, especially when they know that an awful lot of
things in the computer industry work very poorly, so that many so-called "upgrades" are
appreciably worse than what they replaced.

Simple also translates into cheap. Thin Ethernet and twisted pair wiring is relatively
inexpensive. The interface cards are also low cost. Only when hubs and switches were
introduced were substantial investments required, but by the time they were in the picture,
Ethernet was already well established.

Ethernet is easy to maintain. There is no software to install (other than the drivers) and there
are no configuration tables to manage (and get wrong). Also, adding new hosts is as simple as
just plugging them in.

Another point is that Ethernet interworks easily with TCP/IP, which has become dominant. IP is
a connectionless protocol, so it fits perfectly with Ethernet, which is also connectionless. IP fits
much less well with ATM, which is connection oriented. This mismatch definitely hurt ATM's
chances.

Lastly, Ethernet has been able to evolve in certain crucial ways. Speeds have gone up by
several orders of magnitude and hubs and switches have been introduced, but these changes
have not required changing the software. When a network salesman shows up at a large
installation and says: "l have this fantastic new network for you. All you have to do is throw
out all your hardware and rewrite all your software," he has a problem. FDDI, Fibre Channel,
and ATM were all faster than Ethernet when introduced, but they were incompatible with
Ethernet, far more complex, and harder to manage. Eventually, Ethernet caught up with them
in terms of speed, so they had no advantages left and quietly died off except for ATM's use
deep within the core of the telephone system.

4.4 Wireless LANS

Although Ethernet is widely used, it is about to get some competition. Wireless LANs are
increasingly popular, and more and more office buildings, airports, and other public places are
being outfitted with them. Wireless LANs can operate in one of two configurations, as we saw
in Fig. 1-35: with a base station and without a base station. Consequently, the 802.11 LAN
standard takes this into account and makes provision for both arrangements, as we will see
shortly.

We gave some background information on 802.11 in Sec. 1.5.4. Now is the time to take a
closer look at the technology. In the following sections we will look at the protocol stack,
physical layer radio transmission techniques, MAC sublayer protocol, frame structure, and
services. For more information about 802.11, see (Crow et al., 1997; Geier, 2002; Heegard et
al., 2001; Kapp, 2002; O'Hara and Petrick, 1999; and Severance, 1999). To hear the truth
from the mouth of the horse, consult the published 802.11 standard itself.



4.4.1 The 802.11 Protocol Stack

The protocols used by all the 802 variants, including Ethernet, have a certain commonality of
structure. A partial view of the 802.11 protocol stack is given in Fig. 4-25. The physical layer
corresponds to the OSI physical layer fairly well, but the data link layer in all the 802 protocols
is split into two or more sublayers. In 802.11, the MAC (Medium Access Control) sublayer
determines how the channel is allocated, that is, who gets to transmit next. Above it is the LLC
(Logical Link Control) sublayer, whose job it is to hide the differences between the different
802 variants and make them indistinguishable as far as the network layer is concerned. We
studied the LLC when examining Ethernet earlier in this chapter and will not repeat that
material here.

Figure 4-25. Part of the 802.11 protocol stack.
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The 1997 802.11 standard specifies three transmission techniques allowed in the physical
layer. The infrared method uses much the same technology as television remote controls do.
The other two use short-range radio, using techniques called FHSS and DSSS. Both of these
use a part of the spectrum that does not require licensing (the 2.4-GHz ISM band). Radio-
controlled garage door openers also use this piece of the spectrum, so your notebook
computer may find itself in competition with your garage door. Cordless telephones and
microwave ovens also use this band. All of these techniques operate at 1 or 2 Mbps and at low
enough power that they do not conflict too much. In 1999, two new techniques were
introduced to achieve higher bandwidth. These are called OFDM and HR-DSSS. They operate at
up to 54 Mbps and 11 Mbps, respectively. In 2001, a second OFDM modulation was introduced,
but in a different frequency band from the first one. Now we will examine each of them briefly.
Technically, these belong to the physical layer and should have been examined in Chapter 2,
but since they are so closely tied to LANs in general and the 802.11 MAC sublayer, we treat
them here instead.

4.4.2 The 802.11 Physical Layer

Each of the five permitted transmission techniques makes it possible to send a MAC frame
from one station to another. They differ, however, in the technology used and speeds
achievable. A detailed discussion of these technologies is far beyond the scope of this book,
but a few words on each one, along with some of the key words, may provide interested
readers with terms to search for on the Internet or elsewhere for more information.

The infrared option uses diffused (i.e., not line of sight) transmission at 0.85 or 0.95 microns.
Two speeds are permitted: 1 Mbps and 2 Mbps. At 1 Mbps, an encoding scheme is used in
which a group of 4 bits is encoded as a 16-bit codeword containing fifteen Os and a single 1,



using what is called Gray code. This code has the property that a small error in time
synchronization leads to only a single bit error in the output. At 2 Mbps, the encoding takes 2
bits and produces a 4-bit codeword, also with only a single 1, that is one of 0001, 0010, 0100,
or 1000. Infrared signals cannot penetrate walls, so cells in different rooms are well isolated
from each other. Nevertheless, due to the low bandwidth (and the fact that sunlight swamps
infrared signals), this is not a popular option.

FHSS (Frequency Hopping Spread Spectrum) uses 79 channels, each 1-MHz wide, starting
at the low end of the 2.4-GHz ISM band. A pseudorandom number generator is used to
produce the sequence of frequencies hopped to. As long as all stations use the same seed to
the pseudorandom number generator and stay synchronized in time, they will hop to the same
frequencies simultaneously. The amount of time spent at each frequency, the dwell time, is
an adjustable parameter, but must be less than 400 msec. FHSS' randomization provides a fair
way to allocate spectrum in the unregulated ISM band. It also provides a modicum of security
since an intruder who does not know the hopping sequence or dwell time cannot eavesdrop on
transmissions. Over longer distances, multipath fading can be an issue, and FHSS offers good
resistance to it. It is also relatively insensitive to radio interference, which makes it popular for
building-to-building links. Its main disadvantage is its low bandwidth.

The third modulation method, DSSS (Direct Sequence Spread Spectrum), is also restricted
to 1 or 2 Mbps. The scheme used has some similarities to the CDMA system we examined in
Sec. 2.6.2, but differs in other ways. Each bit is transmitted as 11 chips, using what is called a
Barker sequence. It uses phase shift modulation at 1 Mbaud, transmitting 1 bit per baud
when operating at 1 Mbps and 2 bits per baud when operating at 2 Mbps. For years, the FCC
required all wireless communications equipment operating in the ISM bands in the U.S. to use
spread spectrum, but in May 2002, that rule was dropped as new technologies emerged.

The first of the high-speed wireless LANs, 802.11a, uses OFDM (Orthogonal Frequency
Division Multiplexing) to deliver up to 54 Mbps in the wider 5-GHz ISM band. As the term
FDM suggests, different frequencies are used—52 of them, 48 for data and 4 for
synchronization—not unlike ADSL. Since transmissions are present on multiple frequencies at
the same time, this technique is considered a form of spread spectrum, but different from both
CDMA and FHSS. Splitting the signal into many narrow bands has some key advantages over
using a single wide band, including better immunity to narrowband interference and the
possibility of using noncontiguous bands. A complex encoding system is used, based on phase-
shift modulation for speeds up to 18 Mbps and on QAM above that. At 54 Mbps, 216 data bits
are encoded into 288-bit symbols. Part of the motivation for OFDM is compatibility with the
European HiperLAN/2 system (Doufexi et al., 2002). The technique has a good spectrum
efficiency in terms of bits/Hz and good immunity to multipath fading.

Next, we come to HR-DSSS (High Rate Direct Sequence Spread Spectrum), another
spread spectrum technique, which uses 11 million chips/sec to achieve 11 Mbps in the 2.4-GHz
band. It is called 802.11b but is not a follow-up to 802.11a. In fact, its standard was
approved first and it got to market first. Data rates supported by 802.11b are 1, 2, 5.5, and 11
Mbps. The two slow rates run at 1 Mbaud, with 1 and 2 bits per baud, respectively, using
phase shift modulation (for compatibility with DSSS). The two faster rates run at 1.375 Mbaud,
with 4 and 8 bits per baud, respectively, using Walsh/Hadamard codes. The data rate may
be dynamically adapted during operation to achieve the optimum speed possible under current
conditions of load and noise. In practice, the operating speed of 802.11b is nearly always 11
Mbps. Although 802.11b is slower than 802.11a, its range is about 7 times greater, which is
more important in many situations.

An enhanced version of 802.11b, 802.11g, was approved by IEEE in November 2001 after
much politicking about whose patented technology it would use. It uses the OFDM modulation
method of 802.11a but operates in the narrow 2.4-GHz ISM band along with 802.11b. In
theory it can operate at up to 54 MBps. It is not yet clear whether this speed will be realized in
practice. What it does mean is that the 802.11 committee has produced three different high-
speed wireless LANs: 802.11a, 802.11b, and 802.11g (not to mention three low-speed



wireless LANs). One can legitimately ask if this is a good thing for a standards committee to
do. Maybe three was their lucky number.

4.4.3 The 802.11 MAC Sublayer Protocol

Let us now return from the land of electrical engineering to the land of computer science. The
802.11 MAC sublayer protocol is quite different from that of Ethernet due to the inherent
complexity of the wireless environment compared to that of a wired system. With Ethernet, a
station just waits until the ether goes silent and starts transmitting. If it does not receive a
noise burst back within the first 64 bytes, the frame has almost assuredly been delivered
correctly. With wireless, this situation does not hold.

To start with, there is the hidden station problem mentioned earlier and illustrated again in Fig.
4-26(a). Since not all stations are within radio range of each other, transmissions going on in
one part of a cell may not be received elsewhere in the same cell. In this example, station C is
transmitting to station B. If A senses the channel, it will not hear anything and falsely conclude
that it may now start transmitting to B.

Figure 4-26. (a) The hidden station problem. (b) The exposed station
problem.
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In addition, there is the inverse problem, the exposed station problem, illustrated in Fig. 4-
26(b). Here B wants to send to C so it listens to the channel. When it hears a transmission, it
falsely concludes that it may not send to C, even though A may be transmitting to D (not
shown). In addition, most radios are half duplex, meaning that they cannot transmit and listen
for noise bursts at the same time on a single frequency. As a result of these problems, 802.11
does not use CSMA/CD, as Ethernet does.

To deal with this problem, 802.11 supports two modes of operation. The first, called DCF
(Distributed Coordination Function), does not use any kind of central control (in that
respect, similar to Ethernet). The other, called PCF (Point Coordination Function), uses the
base station to control all activity in its cell. All implementations must support DCF but PCF is
optional. We will now discuss these two modes in turn.

When DCF is employed, 802.11 uses a protocol called CSMA/CA (CSMA with Collision
Avoidance). In this protocol, both physical channel sensing and virtual channel sensing are
used. Two methods of operation are supported by CSMA/CA. In the first method, when a
station wants to transmit, it senses the channel. If it is idle, it just starts transmitting. It does
not sense the channel while transmitting but emits its entire frame, which may well be
destroyed at the receiver due to interference there. If the channel is busy, the sender defers
until it goes idle and then starts transmitting. If a collision occurs, the colliding stations wait a



random time, using the Ethernet binary exponential backoff algorithm, and then try again
later.

The other mode of CSMA/CA operation is based on MACAW and uses virtual channel sensing,
as illustrated in Fig. 4-27. In this example, A wants to send to B. C is a station within range of
A (and possibly within range of B, but that does not matter). D is a station within range of B
but not within range of A.

Figure 4-27. The use of virtual channel sensing using CSMA/CA.
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The protocol starts when A decides it wants to send data to B. It begins by sending an RTS
frame to B to request permission to send it a frame. When B receives this request, it may
decide to grant permission, in which case it sends a CTS frame back. Upon receipt of the CTS,
A now sends its frame and starts an ACK timer. Upon correct receipt of the data frame, B
responds with an ACK frame, terminating the exchange. If A's ACK timer expires before the
ACK gets back to it, the whole protocol is run again.

Now let us consider this exchange from the viewpoints of C and D. C is within range of A, so it
may receive the RTS frame. If it does, it realizes that someone is going to send data soon, so
for the good of all it desists from transmitting anything until the exchange is completed. From
the information provided in the RTS request, it can estimate how long the sequence will take,
including the final ACK, so it asserts a kind of virtual channel busy for itself, indicated by NAV
(Network Allocation Vector) in Fig. 4-27. D does not hear the RTS, but it does hear the
CTS, so it also asserts the NAV signal for itself. Note that the NAV signals are not transmitted;
they are just internal reminders to keep quiet for a certain period of time.

In contrast to wired networks, wireless networks are noisy and unreliable, in no small part due
to microwave ovens, which also use the unlicensed ISM bands. As a consequence, the
probability of a frame making it through successfully decreases with frame length. If the
probability of any bit being in error is p, then the probability of an n-bit frame being received
entirely correctly is (1 - p)". For example, for p = 10, the probability of receiving a full
Ethernet frame (12,144 bits) correctly is less than 30%. If p = 107, about one frame in 9 will
be damaged. Even if p = 10°, over 1% of the frames will be damaged, which amounts to
almost a dozen per second, and more if frames shorter than the maximum are used. In
summary, if a frame is too long, it has very little chance of getting through undamaged and
will probably have to be retransmitted.

To deal with the problem of noisy channels, 802.11 allows frames to be fragmented into
smaller pieces, each with its own checksum. The fragments are individually numbered and
acknowledged using a stop-and-wait protocol (i.e., the sender may not transmit fragment k +
1 until it has received the acknowledgment for fragment k). Once the channel has been
acquired using RTS and CTS, multiple fragments can be sent in a row, as shown in Fig. 4-28.
sequence of fragments is called a fragment burst.

Figure 4-28. A fragment burst.
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Fragmentation increases the throughput by restricting retransmissions to the bad fragments
rather than the entire frame. The fragment size is not fixed by the standard but is a parameter
of each cell and can be adjusted by the base station. The NAV mechanism keeps other stations
quiet only until the next acknowledgement, but another mechanism (described below) is used
to allow a whole fragment burst to be sent without interference.

All of the above discussion applies to the 802.11 DCF mode. In this mode, there is no central
control, and stations compete for air time, just as they do with Ethernet. The other allowed
mode is PCF, in which the base station polls the other stations, asking them if they have any
frames to send. Since transmission order is completely controlled by the base station in PCF
mode, no collisions ever occur. The standard prescribes the mechanism for polling, but not the
polling frequency, polling order, or even whether all stations need to get equal service.

The basic mechanism is for the base station to broadcast a beacon frame periodically (10 to
100 times per second). The beacon frame contains system parameters, such as hopping
sequences and dwell times (for FHSS), clock synchronization, etc. It also invites new stations
to sign up for polling service. Once a station has signed up for polling service at a certain rate,
it is effectively guaranteed a certain fraction of the bandwidth, thus making it possible to give
quality-of-service guarantees.

Battery life is always an issue with mobile wireless devices, so 802.11 pays attention to the
issue of power management. In particular, the base station can direct a mobile station to go
into sleep state until explicitly awakened by the base station or the user. Having told a station
to go to sleep, however, means that the base station has the responsibility for buffering any
frames directed at it while the mobile station is asleep. These can be collected later.

PCF and DCF can coexist within one cell. At first it might seem impossible to have central
control and distributed control operating at the same time, but 802.11 provides a way to
achieve this goal. It works by carefully defining the interframe time interval. After a frame has
been sent, a certain amount of dead time is required before any station may send a frame.
Four different intervals are defined, each for a specific purpose. The four intervals are depicted

in Fig. 4-29.

Figure 4-29. Interframe spacing in 802.11
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The shortest interval is SIFS (Short InterFrame Spacing). It is used to allow the parties in a
single dialog the chance to go first. This includes letting the receiver send a CTS to respond to
an RTS, letting the receiver send an ACK for a fragment or full data frame, and letting the
sender of a fragment burst transmit the next fragment without having to send an RTS again.

There is always exactly one station that is entitled to respond after a SIFS interval. If it fails to
make use of its chance and a time PIFS (PCF InterFrame Spacing) elapses, the base station
may send a beacon frame or poll frame. This mechanism allows a station sending a data frame
or fragment sequence to finish its frame without anyone else getting in the way, but gives the

base station a chance to grab the channel when the previous sender is done without having to

compete with eager users.

If the base station has nothing to say and a time DIFS (DCF InterFrame Spacing) elapses,
any station may attempt to acquire the channel to send a new frame. The usual contention
rules apply, and binary exponential backoff may be needed if a collision occurs.

The last time interval, EIFS (Extended InterFrame Spacing), is used only by a station that
has just received a bad or unknown frame to report the bad frame. The idea of giving this
event the lowest priority is that since the receiver may have no idea of what is going on, it
should wait a substantial time to avoid interfering with an ongoing dialog between two
stations.

4.4.4 The 802.11 Frame Structure

The 802.11 standard defines three different classes of frames on the wire: data, control, and
management. Each of these has a header with a variety of fields used within the MAC
sublayer. In addition, there are some headers used by the physical layer but these mostly deal
with the modulation techniques used, so we will not discuss them here.

The format of the data frame is shown in Fig. 4-30. First comes the Frame Control field. It
itself has 11 subfields. The first of these is the Protocol version, which allows two versions of
the protocol to operate at the same time in the same cell. Then come the Type (data, control,
or management) and Subtype fields (e.g., RTS or CTS). The To DS and From DS bits indicate
the frame is going to or coming from the intercell distribution system (e.g., Ethernet). The MF
bit means that more fragments will follow. The Retry bit marks a retransmission of a frame
sent earlier. The Power management bit is used by the base station to put the receiver into
sleep state or take it out of sleep state. The More bit indicates that the sender has additional
frames for the receiver. The W bit specifies that the frame body has been encrypted using the
WEP (Wired Equivalent Privacy) algorithm. Finally, the O bit tells the receiver that a
sequence of frames with this bit on must be processed strictly in order.

Figure 4-30. The 802.11 data frame.
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The second field of the data frame, the Duration field, tells how long the frame and its
acknowledgement will occupy the channel. This field is also present in the control frames and
is how other stations manage the NAV mechanism. The frame header contains four addresses,
all in standard IEEE 802 format. The source and destination are obviously needed, but what
are the other two for? Remember that frames may enter or leave a cell via a base station. The
other two addresses are used for the source and destination base stations for intercell traffic.

The Sequence field allows fragments to be numbered. Of the 16 bits available, 12 identify the
frame and 4 identify the fragment. The Data field contains the payload, up to 2312 bytes,
followed by the usual Checksum.

Management frames have a format similar to that of data frames, except without one of the
base station addresses, because management frames are restricted to a single cell. Control
frames are shorter still, having only one or two addresses, no Data field, and no Sequence
field. The key information here is in the Subtype field, usually RTS, CTS, or ACK.

4.45 Services

The 802.11 standard states that each conformant wireless LAN must provide nine services.
These services are divided into two categories: five distribution services and four station
services. The distribution services relate to managing cell membership and interacting with
stations outside the cell. In contrast, the station services relate to activity within a single cell.

The five distribution services are provided by the base stations and deal with station mobility
as they enter and leave cells, attaching themselves to and detaching themselves from base
stations. They are as follows.

1. Association. This service is used by mobile stations to connect themselves to base
stations. Typically, it is used just after a station moves within the radio range of the
base station. Upon arrival, it announces its identity and capabilities. The capabilities
include the data rates supported, need for PCF services (i.e., polling), and power
management requirements. The base station may accept or reject the mobile station. If
the mobile station is accepted, it must then authenticate itself.

2. Disassociation. Either the station or the base station may disassociate, thus breaking
the relationship. A station should use this service before shutting down or leaving, but
the base station may also use it before going down for maintenance.

3. Reassociation. A station may change its preferred base station using this service. This
facility is useful for mobile stations moving from one cell to another. If it is used
correctly, no data will be lost as a consequence of the handover. (But 802.11, like
Ethernet, is just a best-efforts service.)

4. Distribution. This service determines how to route frames sent to the base station. If
the destination is local to the base station, the frames can be sent out directly over the
air. Otherwise, they will have to be forwarded over the wired network.

5. Integration. If a frame needs to be sent through a non-802.11 network with a
different addressing scheme or frame format, this service handles the translation from
the 802.11 format to the format required by the destination network.



The remaining four services are intracell (i.e., relate to actions within a single cell). They are
used after association has taken place and are as follows.

1. Authentication. Because wireless communication can easily be sent or received by
unauthorized stations, a station must authenticate itself before it is permitted to send
data. After a mobile station has been associated by the base station (i.e., accepted into
its cell), the base station sends a special challenge frame to it to see if the mobile
station knows the secret key (password) that has been assigned to it. It proves its
knowledge of the secret key by encrypting the challenge frame and sending it back to
the base station. If the result is correct, the mobile is fully enrolled in the cell. In the
initial standard, the base station does not have to prove its identity to the mobile
station, but work to repair this defect in the standard is underway.

2. Deauthentication. When a previously authenticated station wants to leave the
network, it is deauthenticated. After deauthentication, it may no longer use the
network.

3. Privacy. For information sent over a wireless LAN to be kept confidential, it must be
encrypted. This service manages the encryption and decryption. The encryption
algorithm specified is RC4, invented by Ronald Rivest of M.I.T.

4. Data delivery. Finally, data transmission is what it is all about, so 802.11 naturally
provides a way to transmit and receive data. Since 802.11 is modeled on Ethernet and
transmission over Ethernet is not guaranteed to be 100% reliable, transmission over
802.11 is not guaranteed to be reliable either. Higher layers must deal with detecting
and correcting errors.

An 802.11 cell has some parameters that can be inspected and, in some cases, adjusted. They
relate to encryption, timeout intervals, data rates, beacon frequency, and so on.

Wireless LANSs based on 802.11 are starting to be deployed in office buildings, airports, hotels,
restaurants, and campuses around the world. Rapid growth is expected. For some experience about
the widespread deployment of 802.11 at CMU, see (Hills, 2001).

4.5 Broadband Wireless

We have been indoors too long. Let us now go outside and see if any interesting networking is
going on there. It turns out that quite a bit is going on there, and some of it has to do with the
so-called last mile. With the deregulation of the telephone system in many countries,
competitors to the entrenched telephone company are now often allowed to offer local voice
and high-speed Internet service. There is certainly plenty of demand. The problem is that
running fiber, coax, or even category 5 twisted pair to millions of homes and businesses is
prohibitively expensive. What is a competitor to do?

The answer is broadband wireless. Erecting a big antenna on a hill just outside of town and
installing antennas directed at it on customers' roofs is much easier and cheaper than digging
trenches and stringing cables. Thus, competing telecommunication companies have a great
interest in providing a multimegabit wireless communication service for voice, Internet, movies
on demand, etc. As we saw in Fig. 2-30, LMDS was invented for this purpose. However, until
recently, every carrier devised its own system. This lack of standards meant that hardware and
software could not be mass produced, which kept prices high and acceptance low.

Many people in the industry realized that having a broadband wireless standard was the key
element missing, so IEEE was asked to form a committee composed of people from key
companies and academia to draw up the standard. The next number available in the 802
numbering space was 802.16, so the standard got this number. Work was started in July
1999, and the final standard was approved in April 2002. Officially the standard is called "Air
Interface for Fixed Broadband Wireless Access Systems." However, some people prefer to call



it a wireless MAN (Metropolitan Area Network) or a wireless local loop. We regard all
these terms as interchangeable.

Like some of the other 802 standards, 802.16 was heavily influenced by the OSI model,
including the (sub)layers, terminology, service primitives, and more. Unfortunately, also like
OSil, it is fairly complicated. In the following sections we will give a brief description of some of
the highlights of 802.16, but this treatment is far from complete and leaves out many details.
For additional information about broadband wireless in general, see (Bolcskei et al., 2001; and
Webb, 2001). For information about 802.16 in particular, see (Eklund et al., 2002).

4.5.1 Comparison of 802.11 with 802.16

At this point you may be thinking: Why devise a new standard? Why not just use 802.117
There are some very good reasons for not using 802.11, primarily because 802.11 and 802.16
solve different problems. Before getting into the technology of 802.16, it is probably
worthwhile saying a few words about why a new standard is needed at all.

The environments in which 802.11 and 802.16 operate are similar in some ways, primarily in
that they were designed to provide high-bandwidth wireless communications. But they also
differ in some major ways. To start with, 802.16 provides service to buildings, and buildings
are not mobile. They do not migrate from cell to cell often. Much of 802.11 deals with mobility,
and none of that is relevant here. Next, buildings can have more than one computer in them, a
complication that does not occur when the end station is a single notebook computer. Because
building owners are generally willing to spend much more money for communication gear than
are notebook owners, better radios are available. This difference means that 802.16 can use
full-duplex communication, something 802.11 avoids to keep the cost of the radios low.

Because 802.16 runs over part of a city, the distances involved can be several kilometers,
which means that the perceived power at the base station can vary widely from station to
station. This variation affects the signal-to-noise ratio, which, in, turn, dictates multiple
modulation schemes. Also, open communication over a city means that security and privacy
are essential and mandatory.

Furthermore, each cell is likely to have many more users than will a typical 802.11 cell, and
these users are expected to use more bandwidth than will a typical 802.11 user. After all it is
rare for a company to invite 50 employees to show up in a room with their laptops to see if
they can saturate the 802.11 wireless network by watching 50 separate movies at once. For
this reason, more spectrum is needed than the ISM bands can provide, forcing 802.16 to
operate in the much higher 10-to-66 GHz frequency range, the only place unused spectrum is
still available.

But these millimeter waves have different physical properties than the longer waves in the ISM
bands, which in turn requires a completely different physical layer. One property that
millimeter waves have is that they are strongly absorbed by water (especially rain, but to
some extent also by snow, hail, and with a bit of bad luck, heavy fog). Consequently, error
handling is more important than in an indoor environment. Millimeter waves can be focused
into directional beams (802.11 is omnidirectional), so choices made in 802.11 relating to
multipath propagation are moot here.

Another issue is quality of service. While 802.11 provides some support for real-time traffic
(using PCF mode), it was not really designed for telephony and heavy-duty multimedia usage.
In contrast, 802.16 is expected to support these applications completely because it is intended
for residential as well as business use.

In short, 802.11 was designed to be mobile Ethernet, whereas 802.16 was designed to be
wireless, but stationary, cable television. These differences are so big that the resulting
standards are very different as they try to optimize different things.



A very brief comparison with the cellular phone system is also worthwhile. With mobile phones,
we are talking about narrow-band, voice-oriented, low-powered, mobile stations that
communicate using medium-length microwaves. Nobody watches high-resolution, two-hour
movies on GSM mobile phones (yet). Even UMTS has little hope of changing this situation. In
short, the wireless MAN world is far more demanding than is the mobile phone world, so a
completely different system is needed. Whether 802.16 could be used for mobile devices in the
future is an interesting question. It was not optimized for them, but the possibility is there. For
the moment it is focused on fixed wireless.

45.2 The 802.16 Protocol Stack

The 802.16 protocol stack is illustrated in Fig. 4-31. The general structure is similar to that of
the other 802 networks, but with more sublayers. The bottom sublayer deals with
transmission. Traditional narrow-band radio is used with conventional modulation schemes.
Above the physical transmission layer comes a convergence sublayer to hide the different
technologies from the data link layer. Actually, 802.11 has something like this too, only the
committee chose not to formalize it with an OSI-type name.

Figure 4-31. The 802.16 protocol stack.
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Although we have not shown them in the figure, work is already underway to add two new
physical layer protocols. The 802.16a standard will support OFDM in the 2-to-11 GHz
frequency range. The 802.16b standard will operate in the 5-GHz ISM band. Both of these are
attempts to move closer to 802.11.

The data link layer consists of three sublayers. The bottom one deals with privacy and security,
which is far more crucial for public outdoor networks than for private indoor networks. It
manages encryption, decryption, and key management.

Next comes the MAC sublayer common part. This is where the main protocols, such as channel
management, are located. The model is that the base station controls the system. It can
schedule the downstream (i.e., base to subscriber) channels very efficiently and plays a major
role in managing the upstream (i.e., subscriber to base) channels as well. An unusual feature
of the MAC sublayer is that, unlike those of the other 802 networks, it is completely connection
oriented, in order to provide quality-of-service guarantees for telephony and multimedia
communication.

The service-specific convergence sublayer takes the place of the logical link sublayer in the
other 802 protocols. Its function is to interface to the network layer. A complication here is
that 802.16 was designed to integrate seamlessly with both datagram protocols (e.g., PPP, IP,
and Ethernet) and ATM. The problem is that packet protocols are connectionless and ATM is
connection oriented. This means that every ATM connection has to map onto an 802.16
connection, in principle a straightforward matter. But onto which 802.16 connection should an
incoming IP packet be mapped? That problem is dealt with in this sublayer.



4.5.3 The 802.16 Physical Layer

As mentioned above, broadband wireless needs a lot of spectrum, and the only place to find it
is in the 10-to-66 GHz range. These millimeter waves have an interesting property that longer
microwaves do not: they travel in straight lines, unlike sound but similar to light. As a
consequence, the base station can have multiple antennas, each pointing at a different sector
of the surrounding terrain, as shown in Fig. 4-32. Each sector has its own users and is fairly
independent of the adjoining ones, something not true of cellular radio, which is
omnidirectional.

Figure 4-32. The 802.16 transmission environment.
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Because signal strength in the millimeter band falls off sharply with distance from the base
station, the signal-to-noise ratio also drops with distance from the base station. For this
reason, 802.16 employs three different modulation schemes, depending on how far the
subscriber station is from the base station. For close-in subscribers, QAM-64 is used, with 6
bits/baud. For medium-distance subscribers, QAM-16 is used, with 4 bits/baud. For distant
subscribers, QPSK is used, with 2 bits/baud. For example, for a typical value of 25 MHz worth
of spectrum, QAM-64 gives 150 Mbps, QAM-16 gives 100 Mbps, and QPSK gives 50 Mbps. In
other words, the farther the subscriber is from the base station, the lower the data rate
(similar to what we saw with ADSL in Fig. 2-27). The constellation diagrams for these three
modulation techniques were shown in Fig. 2-25.

Given the goal of producing a broadband system, and subject to the above physical
constraints, the 802.16 designers worked hard to use the available spectrum efficiently. One
thing they did not like was the way GSM and DAMPS work. Both of those use different but
equal frequency bands for upstream and downstream traffic. For voice, traffic is probably
symmetric for the most part, but for Internet access, there is often more downstream traffic
than upstream traffic. Consequently, 802.16 provides a more flexible way to allocate the
bandwidth. Two schemes are used, FDD (Frequency Division Duplexing) and TDD (Time
Division Duplexing). The latter is illustrated in Fig. 4-33. Here the base station periodically
sends out frames. Each frame contains time slots. The first ones are for downstream traffic.
Then comes a guard time used by the stations to switch direction. Finally, we have slots for
upstream traffic. The number of time slots devoted to each direction can be changed
dynamically to match the bandwidth in each direction to the traffic.

Figure 4-33. Frames and time slots for time division duplexing.
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Downstream traffic is mapped onto time slots by the base station. The base station is
completely in control for this direction. Upstream traffic is more complex and depends on the
quality of service required. We will come to slot allocation when we discuss the MAC sublayer
below.

Another interesting feature of the physical layer is its ability to pack multiple MAC frames
back-to back in a single physical transmission. The feature enhances spectral efficiency by
reducing the number of preambles and physical layer headers needed.

Also noteworthy is the use of Hamming codes to do forward error correction in the physical
layer. Nearly all other networks simply rely on checksums to detect errors and request
retransmission when frames are received in error. But in the wide area broadband
environment, so many transmission errors are expected that error correction is employed in
the physical layer, in addition to checksums in the higher layers. The net effect of the error
correction is to make the channel look better than it really is (in the same way that CD-ROMs
appear to be very reliable, but only because more than half the total bits are devoted to error
correction in the physical layer).

4.5.4 The 802.16 MAC Sublayer Protocol

The data link layer is divided into three sublayers, as we saw in Fig. 4-31. Since we will not
study cryptography until Chap. 8, it is difficult to explain now how the security sublayer works.
Suffice it to say that encryption is used to keep secret all data transmitted. Only the frame
payloads are encrypted; the headers are not. This property means that a snooper can see who
is talking to whom but cannot tell what they are saying to each other.

If you already know something about cryptography, here comes a one-paragraph explanation
of the security sublayer. If you know nothing about cryptography, you are not likely to find the
next paragraph terribly enlightening (but you might consider rereading it after finishing Chap.
8).

At the time a subscriber connects to a base station, they perform mutual authentication with
RSA public-key cryptography using X.509 certificates. The payloads themselves are encrypted
using a symmetric-key system, either DES with cipher block chaining or triple DES with two
keys. AES (Rijndael) is likely to be added soon. Integrity checking uses SHA-1. Now that was
not so bad, was it?

Let us now look at the MAC sublayer common part. MAC frames occupy an integral number of
physical layer time slots. Each frame is composed of sub-frames, the first two of which are the
downstream and upstream maps. These maps tell what is in which time slot and which time
slots are free. The downstream map also contains various system parameters to inform new
stations as they come on-line.

The downstream channel is fairly straightforward. The base station simply decides what to put
in which subframe. The upstream channel is more complicated since there are competing
uncoordinated subscribers that need access to it. Its allocation is tied closely to the quality-of-
service issue. Four classes of service are defined as follows:

1. Constant bit rate service.
2. Real-time variable bit rate service.



3. Non-real-time variable bit rate service.
4. Best-efforts service.

All service in 802.16 is connection-oriented, and each connection gets one of the above classes
of service, determined when the connection is set up. This design is very different from that of
802.11 or Ethernet, which have no connections in the MAC sublayer.

Constant bit rate service is intended for transmitting uncompressed voice such ason a T1
channel. This service needs to send a predetermined amount of data at predetermined time
intervals. It is accommodated by dedicating certain time slots to each connection of this type.
Once the bandwidth has been allocated, the time slots are available automatically, without the
need to ask for each one.

Real-time variable bit rate service is for compressed multimedia and other soft real-time
applications in which the amount of bandwidth needed each instant may vary. It is
accommodated by the base station polling the subscriber at a fixed interval to ask how much
bandwidth is needed this time.

Non-real-time variable bit rate service is for heavy transmissions that are not real time, such
as large file transfers. For this service the base station polls the subscriber often, but not at
rigidly-prescribed time intervals. A constant bit rate customer can set a bit in one of its frames
requesting a poll in order to send additional (variable bit rate) traffic.

If a station does not respond to a poll k times in a row, the base station puts it into a multicast
group and takes away its personal poll. Instead, when the multicast group is polled, any of the
stations in it can respond, contending for service. In this way, stations with little traffic do not

waste valuable polls.

Finally, best-efforts service is for everything else. No polling is done and the subscriber must
contend for bandwidth with other best-efforts subscribers. Requests for bandwidth are done in
time slots marked in the upstream map as available for contention. If a request is successful,
its success will be noted in the next downstream map. If it is not successful, unsuccessful
subscribers have to try again later. To minimize collisions, the Ethernet binary exponential
backoff algorithm is used.

The standard defines two forms of bandwidth allocation: per station and per connection. In the
former case, the subscriber station aggregates the needs of all the users in the building and
makes collective requests for them. When it is granted bandwidth, it doles out that bandwidth
to its users as it sees fit. In the latter case, the base station manages each connection directly.

455 The 802.16 Frame Structure

All MAC frames begin with a generic header. The header is followed by an optional payload and
an optional checksum (CRC), as illustrated in Fig. 4-34. The payload is not needed in control
frames, for example, those requesting channel slots. The checksum is (surprisingly) also
optional due to the error correction in the physical layer and the fact that no attempt is ever
made to retransmit real-time frames. If no retransmissions will be attempted, why even bother
with a checksum?

Figure 4-34. (a) A generic frame. (b) A bandwidth request frame.
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A quick rundown of the header fields of Fig. 4-34(a) is as follows. The EC bit tells whether the
payload is encrypted. The Type field identifies the frame type, mostly telling whether packing
and fragmentation are present. The CI field indicates the presence or absence of the final
checksum. The EK field tells which of the encryption keys is being used (if any). The Length
field gives the complete length of the frame, including the header. The Connection identifier
tells which connection this frame belongs to. Finally, the HeaderCRC field is a checksum over
the header only, using the polynomial x® + x* + x + 1.

A second header type, for frames that request bandwidth, is shown in Fig. 4-34(b). It starts
with a 1 bit instead of a O bit and is similar to the generic header except that the second and
third bytes form a 16-bit number telling how much bandwidth is needed to carry the specified
number of bytes. Bandwidth request frames do not carry a payload or full-frame CRC.

A great deal more could be said about 802.16, but this is not the place to say it. For more
information, please consult the standard itself.

4.6 Bluetooth

In 1994, the L. M. Ericsson company became interested in connecting its mobile phones to
other devices (e.g., PDAs) without cables. Together with four other companies (IBM, Intel,
Nokia, and Toshiba), it formed a SIG (Special Interest Group, i.e., consortium) to develop a
wireless standard for interconnecting computing and communication devices and accessories
using short-range, low-power, inexpensive wireless radios. The project was named Bluetooth,
after Harald Blaatand (Bluetooth) Il (940-981), a Viking king who unified (i.e., conquered)
Denmark and Norway, also without cables.

Although the original idea was just to get rid of the cables between devices, it soon began to
expand in scope and encroach on the area of wireless LANs. While this move makes the
standard more useful, it also creates some competition for mindshare with 802.11. To make
matters worse, the two systems also interfere with each other electrically. It is also worth
noting that Hewlett-Packard introduced an infrared network for connecting computer
peripherals without wires some years ago, but it never really caught on in a big way.

Undaunted by all this, in July 1999 the Bluetooth SIG issued a 1500-page specification of V1.0.
Shortly thereafter, the IEEE standards group looking at wireless personal area networks,
802.15, adopted the Bluetooth document as a basis and began hacking on it. While it might
seem strange to standardize something that already had a very detailed specification and no
incompatible implementations that needed to be harmonized, history shows that having an
open standard managed by a neutral body such as the IEEE often promotes the use of a
technology. To be a bit more precise, it should be noted that the Bluetooth specification is for a
complete system, from the physical layer to the application layer. The IEEE 802.15 committee
is standardizing only the physical and data link layers; the rest of the protocol stack falls
outside its charter.

Even though IEEE approved the first PAN standard, 802.15.1, in 2002, the Bluetooth SIG is
still active busy with improvements. Although the Bluetooth SIG and IEEE versions are not
identical, it is hoped that they will soon converge to a single standard.



4.6.1 Bluetooth Architecture

Let us start our study of the Bluetooth system with a quick overview of what it contains and
what it is intended to do. The basic unit of a Bluetooth system is a piconet, which consists of
a master node and up to seven active slave nodes within a distance of 10 meters. Multiple
piconets can exist in the same (large) room and can even be connected via a bridge node, as
shown in Fig. 4-35. An interconnected collection of piconets is called a scatternet.

Figure 4-35. Two piconets can be connected to form a scatternet.
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In addition to the seven active slave nodes in a piconet, there can be up to 255 parked nodes
in the net. These are devices that the master has switched to a low-power state to reduce the
drain on their batteries. In parked state, a device cannot do anything except respond to an
activation or beacon signal from the master. There are also two intermediate power states,
hold and sniff, but these will not concern us here.

The reason for the master/slave design is that the designers intended to facilitate the
implementation of complete Bluetooth chips for under $5. The consequence of this decision is
that the slaves are fairly dumb, basically just doing whatever the master tells them to do. At
its heart, a piconet is a centralized TDM system, with the master controlling the clock and
determining which device gets to communicate in which time slot. All communication is
between the master and a slave; direct slave-slave communication is not possible.

4.6.2 Bluetooth Applications

Most network protocols just provide channels between communicating entities and let
applications designers figure out what they want to use them for. For example, 802.11 does
not specify whether users should use their notebook computers for reading e-mail, surfing the
Web, or something else. In contrast, the Bluetooth V1.1 specification names 13 specific
applications to be supported and provides different protocol stacks for each one. Unfortunately,
this approach leads to a very large amount of complexity, which we will omit here. The 13
applications, which are called profiles, are listed in Fig. 4-36. By looking at them briefly now,
we may see more clearly what the Bluetooth SIG is trying to accomplish.

Figure 4-36. The Bluetooth profiles.
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The generic access profile is not really an application, but rather the basis upon which the real
applications are built. Its main job is to provide a way to establish and maintain secure links
(channels) between the master and the slaves. Also relatively generic is the service discovery
profile, which is used by devices to discover what services other devices have to offer. All
Bluetooth devices are expected to implement these two profiles. The remaining ones are
optional.

The serial port profile is a transport protocol that most of the remaining profiles use. It
emulates a serial line and is especially useful for legacy applications that expect a serial line.

The generic object exchange profile defines a client-server relationship for moving data
around. Clients initiate operations, but a slave can be either a client or a server. Like the serial
port profile, it is a building block for other profiles.

The next group of three profiles is for networking. The LAN access profile allows a Bluetooth
device to connect to a fixed network. This profile is a direct competitor to 802.11. The dial-up
networking profile was the original motivation for the whole project. It allows a notebook
computer to connect to a mobile phone containing a built-in modem without wires. The fax
profile is similar to dial-up networking, except that it allows wireless fax machines to send and
receive faxes using mobile phones without a wire between the two.

The next three profiles are for telephony. The cordless telephony profile provides a way to
connect the handset of a cordless telephone to the base station. Currently, most cordless
telephones cannot also be used as mobile phones, but in the future, cordless and mobile
phones may merge. The intercom profile allows two telephones to connect as walkie-talkies.
Finally, the headset profile provides hands-free voice communication between the headset and
its base station, for example, for hands-free telephony while driving a car.

The remaining three profiles are for actually exchanging objects between two wireless devices.
These could be business cards, pictures, or data files. The synchronization profile, in particular,
is intended for loading data into a PDA or notebook computer when it leaves home and
collecting data from it when it returns.

Was it really necessary to spell out all these applications in detail and provide different protocol
stacks for each one? Probably not, but there were a number of different working groups that
devised different parts of the standard, and each one just focused on its specific problem and
generated its own profile. Think of this as Conway's law in action. (In the April 1968 issue of
Datamation magazine, Melvin Conway observed that if you assign n people to write a compiler,
you will get an n-pass compiler, or more generally, the software structure mirrors the structure



of the group that produced it.) It would probably have been possible to get away with two
protocol stacks instead of 13, one for file transfer and one for streaming real-time
communication.

4.6.3 The Bluetooth Protocol Stack

The Bluetooth standard has many protocols grouped loosely into layers. The layer structure
does not follow the OSI model, the TCP/IP model, the 802 model, or any other known model.
However, IEEE is working on modifying Bluetooth to shoehorn it into the 802 model better.
The basic Bluetooth protocol architecture as modified by the 802 committee is shown in Fig. 4-
37.

Figure 4-37. The 802.15 version of the Bluetooth protocol architecture.
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The bottom layer is the physical radio layer, which corresponds fairly well to the physical layer
in the OSI and 802 models. It deals with radio transmission and modulation. Many of the
concerns here have to do with the goal of making the system inexpensive so that it can
become a mass market item.

The baseband layer is somewhat analogous to the MAC sublayer but also includes elements of
the physical layer. It deals with how the master controls time slots and how these slots are
grouped into frames.

Next comes a layer with a group of somewhat related protocols. The link manager handles the
establishment of logical channels between devices, including power management,
authentication, and quality of service. The logical link control adaptation protocol (often called
L2CAP) shields the upper layers from the details of transmission. It is analogous to the
standard 802 LLC sublayer, but technically different from it. As the names suggest, the audio
and control protocols deal with audio and control, respectively. The applications can get at
them directly, without having to go through the L2CAP protocol.

The next layer up is the middleware layer, which contains a mix of different protocols. The 802
LLC was inserted here by IEEE for compatibility with its other 802 networks. The RFcomm,
telephony, and service discovery protocols are native. RFcomm (Radio Frequency
communication) is the protocol that emulates the standard serial port found on PCs for
connecting the keyboard, mouse, and modem, among other devices. It has been designed to
allow legacy devices to use it easily. The telephony protocol is a real-time protocol used for the
three speech-oriented profiles. It also manages call setup and termination. Finally, the service
discovery protocol is used to locate services within the network.

The top layer is where the applications and profiles are located. They make use of the
protocols in lower layers to get their work done. Each application has its own dedicated subset
of the protocols. Specific devices, such as a headset, usually contain only those protocols
needed by that application and no others.



In the following sections we will examine the three lowest layers of the Bluetooth protocol
stack since these roughly correspond to the physical and MAC sublayers.

4.6.4 The Bluetooth Radio Layer

The radio layer moves the bits from master to slave, or vice versa. It is a low-power system
with a range of 10 meters operating in the 2.4-GHz ISM band. The band is divided into 79
channels of 1 MHz each. Modulation is frequency shift keying, with 1 bit per Hz giving a gross
data rate of 1 Mbps, but much of this spectrum is consumed by overhead. To allocate the
channels fairly, frequency hopping spread spectrum is used with 1600 hops/sec and a dwell
time of 625 usec. All the nodes in a piconet hop simultaneously, with the master dictating the
hop sequence.

Because both 802.11 and Bluetooth operate in the 2.4-GHz ISM band on the same 79
channels, they interfere with each other. Since Bluetooth hops far faster than 802.11, it is far
more likely that a Bluetooth device will ruin 802.11 transmissions than the other way around.
Since 802.11 and 802.15 are both IEEE standards, IEEE is looking for a solution to this
problem, but it is not so easy to find since both systems use the ISM band for the same
reason: no license is required there. The 802.11a standard uses the other (5 GHz) ISM band,
but it has a much shorter range than 802.11b (due to the physics of radio waves), so using
802.11a is not a perfect solution for all cases. Some companies have solved the problem by
banning Bluetooth altogether. A market-based solution is for the network with more power
(politically and economically, not electrically) to demand that the weaker party modify its
standard to stop interfering with it. Some thoughts on this matter are given in (Lansford et al.,
2001).

4.6.5 The Bluetooth Baseband Layer

The baseband layer is the closest thing Bluetooth has to a MAC sublayer. It turns the raw bit
stream into frames and defines some key formats. In the simplest form, the master in each
piconet defines a series of 625 psec time slots, with the master's transmissions starting in the
even slots and the slaves' transmissions starting in the odd ones. This is traditional time
division multiplexing, with the master getting half the slots and the slaves sharing the other
half. Frames can be 1, 3, or 5 slots long.

The frequency hopping timing allows a settling time of 250—260 usec per hop to allow the
radio circuits to become stable. Faster settling is possible, but only at higher cost. For a single-
slot frame, after settling, 366 of the 625 bits are left over. Of these, 126 are for an access
code and the header, leaving 240 bits for data. When five slots are strung together, only one
settling period is needed and a slightly shorter settling period is used, so of the 5 x 625 =
3125 bits in five time slots, 2781 are available to the baseband layer. Thus, longer frames are
much more efficient than single-slot frames.

Each frame is transmitted over a logical channel, called a link, between the master and a
slave. Two kinds of links exist. The first is the ACL (Asynchronous Connection-Less) link,
which is used for packet-switched data available at irregular intervals. These data come from
the L2CAP layer on the sending side and are delivered to the L2CAP layer on the receiving
side. ACL traffic is delivered on a best-efforts basis. No guarantees are given. Frames can be
lost and may have to be retransmitted. A slave may have only one ACL link to its master.

The other is the SCO (Synchronous Connection Oriented) link, for real-time data, such as
telephone connections. This type of channel is allocated a fixed slot in each direction. Due to
the time-critical nature of SCO links, frames sent over them are never retransmitted. Instead,
forward error correction can be used to provide high reliability. A slave may have up to three
SCO links with its master. Each SCO link can transmit one 64,000 bps PCM audio channel.



4.6.6 The Bluetooth L2CAP Layer

The L2CAP layer has three major functions. First, it accepts packets of up to 64 KB from the
upper layers and breaks them into frames for transmission. At the far end, the frames are
reassembled into packets again.

Second, it handles the multiplexing and demultiplexing of multiple packet sources. When a
packet has been reassembled, the L2CAP layer determines which upper-layer protocol to hand
it to, for example, RFcomm or telephony.

Third, L2CAP handles the quality of service requirements, both when links are established and
during normal operation. Also negotiated at setup time is the maximum payload size allowed,
to prevent a large-packet device from drowning a small-packet device. This feature is needed
because not all devices can handle the 64-KB maximum packet.

4.6.7 The Bluetooth Frame Structure

There are several frame formats, the most important of which is shown in Fig. 4-38. It begins
with an access code that usually identifies the master so that slaves within radio range of two
masters can tell which traffic is for them. Next comes a 54-bit header containing typical MAC
sublayer fields. Then comes the data field, of up to 2744 bits (for a five-slot transmission). For
a single time slot, the format is the same except that the data field is 240 bits.

Figure 4-38. A typical Bluetooth data frame.
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Let us take a quick look at the header. The Address field identifies which of the eight active
devices the frame is intended for. The Type field identifies the frame type (ACL, SCO, poll, or
null), the type of error correction used in the data field, and how many slots long the frame is.
The Flow bit is asserted by a slave when its buffer is full and cannot receive any more data.
This is a primitive form of flow control. The Acknowledgement bit is used to piggyback an ACK
onto a frame. The Sequence bit is used to number the frames to detect retransmissions. The
protocol is stop-and-wait, so 1 bit is enough. Then comes the 8-bit header Checksum. The
entire 18-bit header is repeated three times to form the 54-bit header shown in Fig. 4-38. On
the receiving side, a simple circuit examines all three copies of each bit. If all three are the
same, the bit is accepted. If not, the majority opinion wins. Thus, 54 bits of transmission
capacity are used to send 10 bits of header. The reason is that to reliably send data in a noisy
environment using cheap, low-powered (2.5 mW) devices with little computing capacity, a
great deal of redundancy is needed.

Various formats are used for the data field for ACL frames. The SCO frames are simpler
though: the data field is always 240 bits. Three variants are defined, permitting 80, 160, or
240 bits of actual payload, with the rest being used for error correction. In the most reliable
version (80-bit payload), the contents are just repeated three times, the same as the header.

Since the slave may use only the odd slots, it gets 800 slots/sec, just as the master does. With
an 80-bit payload, the channel capacity from the slave is 64,000 bps and the channel capacity



from the master is also 64,000 bps, exactly enough for a single full-duplex PCM voice channel
(which is why a hop rate of 1600 hops/sec was chosen). These numbers mean that a full-
duplex voice channel with 64,000 bps in each direction using the most reliable format
completely saturates the piconet despite a raw bandwidth of 1 Mbps. For the least reliable
variant (240 bits/slot with no redundancy at this level), three full-duplex voice channels can be
supported at once, which is why a maximum of three SCO links is permitted per slave.

There is much more to be said about Bluetooth, but no more space to say it here. For more
information, see (Bhagwat, 2001; Bisdikian, 2001; Bray and Sturman, 2002; Haartsen, 2000;
Johansson et al., 2001 ; Miller and Bisdikian, 2001; and Sairam et al., 2002).

4.7 Data Link Layer Switching

Many organizations have multiple LANs and wish to connect them. LANs can be connected by
devices called bridges, which operate in the data link layer. Bridges examine the data layer
link addresses to do routing. Since they are not supposed to examine the payload field of the
frames they route, they can transport IPv4 (used in the Internet now), IPv6 (will be used in
the Internet in the future), AppleTalk, ATM, OSI, or any other kinds of packets. In contrast,
routers examine the addresses in packets and route based on them. Although this seems like a
clear division between bridges and routers, some modern developments, such as the advent of
switched Ethernet, have muddied the waters, as we will see later. In the following sections we
will look at bridges and switches, especially for connecting different 802 LANs. For a
comprehensive treatment of bridges, switches, and related topics, see (Perlman, 2000).

Before getting into the technology of bridges, it is worthwhile taking a look at some common
situations in which bridges are used. We will mention six reasons why a single organization
may end up with multiple LANs.

First, many university and corporate departments have their own LANs, primarily to connect
their own personal computers, workstations, and servers. Since the goals of the various
departments differ, different departments choose different LANs, without regard to what other
departments are doing. Sooner or later, there is a need for interaction, so bridges are needed.
In this example, multiple LANs came into existence due to the autonomy of their owners.

Second, the organization may be geographically spread over several buildings separated by
considerable distances. It may be cheaper to have separate LANs in each building and connect
them with bridges and laser links than to run a single cable over the entire site.

Third, it may be necessary to split what is logically a single LAN into separate LANs to
accommodate the load. At many universities, for example, thousands of workstations are
available for student and faculty computing. Files are normally kept on file server machines
and are downloaded to users' machines upon request. The enormous scale of this system
precludes putting all the workstations on a single LAN—the total bandwidth needed is far too
high. Instead, multiple LANs connected by bridges are used, as shown in Fig. 4-39. Each LAN
contains a cluster of workstations with its own file server so that most traffic is restricted to a
single LAN and does not add load to the backbone.

Figure 4-39. Multiple LANs connected by a backbone to handle a total
load higher than the capacity of a single LAN.
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It is worth noting that although we usually draw LANs as multidrop cables as in Fig. 4-39 (the
classic look), they are more often implemented with hubs or especially switches nowadays.
However, a long multidrop cable with multiple machines plugged into it and a hub with the
machines connected inside the hub are functionally identical. In both cases, all the machines
belong to the same collision domain, and all use the CSMA/CD protocol to send frames.
Switched LANs are different, however, as we saw before and will see again shortly.

Fourth, in some situations, a single LAN would be adequate in terms of the load, but the
physical distance between the most distant machines is too great (e.g., more than 2.5 km for
Ethernet). Even if laying the cable is easy to do, the network would not work due to the
excessively long round-trip delay. The only solution is to partition the LAN and install bridges
between the segments. Using bridges, the total physical distance covered can be increased.

Fifth, there is the matter of reliability. On a single LAN, a defective node that keeps outputting
a continuous stream of garbage can cripple the LAN. Bridges can be inserted at critical places,
like fire doors in a building, to prevent a single node that has gone berserk from bringing down
the entire system. Unlike a repeater, which just copies whatever it sees, a bridge can be
programmed to exercise some discretion about what it forwards and what it does not forward.

Sixth, and last, bridges can contribute to the organization's security. Most LAN interfaces have
a promiscuous mode, in which all frames are given to the computer, not just those
addressed to it. Spies and busybodies love this feature. By inserting bridges at various places
and being careful not to forward sensitive traffic, a system administrator can isolate parts of
the network so that its traffic cannot escape and fall into the wrong hands.

Ideally, bridges should be fully transparent, meaning it should be possible to move a machine
from one cable segment to another without changing any hardware, software, or configuration
tables. Also, it should be possible for machines on any segment to communicate with machines
on any other segment without regard to the types of LANs being used on the two segments or
on segments in between them. This goal is sometimes achieved, but not always.

4.7.1 Bridges from 802.x to 802.y

Having seen why bridges are needed, let us now turn to the question of how they work. Figure
4-40 illustrates the operation of a simple two-port bridge. Host A on a wireless (802.11) LAN
has a packet to send to a fixed host, B, on an (802.3) Ethernet to which the wireless LAN is
connected. The packet descends into the LLC sublayer and acquires an LLC header (shown in
black in the figure). Then it passes into the MAC sublayer and an 802.11 header is prepended
to it (also a trailer, not shown in the figure). This unit goes out over the air and is picked up by
the base station, which sees that it needs to go to the fixed Ethernet. When it hits the bridge
connecting the 802.11 network to the 802.3 network, it starts in the physical layer and works



its way upward. In the MAC sublayer in the bridge, the 802.11 header is stripped off. The bare
packet (with LLC header) is then handed off to the LLC sublayer in the bridge. In this example,
the packet is destined for an 802.3 LAN, so it works its way down the 802.3 side of the bridge
and off it goes on the Ethernet. Note that a bridge connecting k different LANs will have k
different MAC sublayers and k different physical layers, one for each type.

Figure 4-40. Operation of a LAN bridge from 802.11 to 802.3.
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So far it looks like moving a frame from one LAN to another is easy. Such is not the case. In
this section we will point out some of the difficulties that one encounters when trying to build a
bridge between the various 802 LANs (and MANs). We will focus on 802.3, 802.11, and
802.16, but there are others as well, each with its unique problems.

To start with, each of the LANs uses a different frame format (see Fig. 4-41). Unlike the
differences between Ethernet, token bus, and token ring, which were due to history and big
corporate egos, here the differences are to some extent legitimate. For example, the Duration
field in 802.11 is there due to the MACAW protocol and makes no sense in Ethernet. As a
result, any copying between different LANs requires reformatting, which takes CPU time,
requires a new checksum calculation, and introduces the possibility of undetected errors due to
bad bits in the bridge's memory.

Figure 4-41. The IEEE 802 frame formats. The drawing is not to scale.
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A second problem is that interconnected LANs do not necessarily run at the same data rate.
When forwarding a long run of back-to-back frames from a fast LAN to a slower one, the
bridge will not be able to get rid of the frames as fast as they come in. For example, if a
gigabit Ethernet is pouring bits into an 11-Mbps 802.11b LAN at top speed, the bridge will
have to buffer them, hoping not to run out of memory. Bridges that connect three or more



LANs have a similar problem when several LANs are trying to feed the same output LAN at the
same time even if all the LANs run at the same speed.

A third problem, and potentially the most serious of all, is that different 802 LANs have
different maximum frame lengths. An obvious problem arises when a long frame must be
forwarded onto a LAN that cannot accept it. Splitting the frame into pieces is out of the
question in this layer. All the protocols assume that frames either arrive or they do not. There
is no provision for reassembling frames out of smaller units. This is not to say that such
protocols could not be devised. They could be and have been. It is just that no data link
protocols provide this feature, so bridges must keep their hands off the frame payload.
Basically, there is no solution. Frames that are too large to be forwarded must be discarded.
So much for transparency.

Another point is security. Both 802.11 and 802.16 support encryption in the data link layer.
Ethernet does not. This means that the various encryption services available to the wireless
networks are lost when traffic passes over an Ethernet. Worse yet, if a wireless station uses
data link layer encryption, there will be no way to decrypt it when it arrives over an Ethernet.
If the wireless station does not use encryption, its traffic will be exposed over the air link.
Either way there is a problem.

One solution to the security problem is to do encryption in a higher layer, but then the 802.11
station has to know whether it is talking to another station on an 802.11 network (meaning
use data link layer encryption) or not (meaning do not use it). Forcing the station to make a
choice destroys transparency.

A final point is quality of service. Both 802.11 and 802.16 provide it in various forms, the
former using PCF mode and the latter using constant bit rate connections. Ethernet has no
concept of quality of service, so traffic from either of the others will lose its quality of service
when passing over an Ethernet.

4.7.2 Local Internetworking

The previous section dealt with the problems encountered in connecting two different IEEE 802
LANs via a single bridge. However, in large organizations with many LANSs, just interconnecting
them all raises a variety of issues, even if they are all just Ethernet. Ideally, it should be
possible to go out and buy bridges designed to the IEEE standard, plug the connectors into the
bridges, and everything should work perfectly, instantly. There should be no hardware changes
required, no software changes required, no setting of address switches, no downloading of
routing tables or parameters, nothing. Just plug in the cables and walk away. Furthermore, the
operation of the existing LANs should not be affected by the bridges at all. In other words, the
bridges should be completely transparent (invisible to all the hardware and software).
Surprisingly enough, this is actually possible. Let us now take a look at how this magic is
accomplished.

In its simplest form, a transparent bridge operates in promiscuous mode, accepting every
frame transmitted on all the LANs to which it is attached. As an example, consider the
configuration of Fig. 4-42. Bridge B1 is connected to LANs 1 and 2, and bridge B2 is connected
to LANs 2, 3, and 4. A frame arriving at bridge B1 on LAN 1 destined for A can be discarded
immediately, because it is already on the correct LAN, but a frame arriving on LAN 1 for C or F
must be forwarded.

Figure 4-42. A configuration with four LANs and two bridges.



P9

Bridge LAN 4
NE

When a frame arrives, a bridge must decide whether to discard or forward it, and if the latter,
on which LAN to put the frame. This decision is made by looking up the destination address in
a big (hash) table inside the bridge. The table can list each possible destination and tell which
output line (LAN) it belongs on. For example, B2's table would list A as belonging to LAN 2,
since all B2 has to know is which LAN to put frames for A on. That, in fact, more forwarding
happens later is not of interest to it.

When the bridges are first plugged in, all the hash tables are empty. None of the bridges know
where any of the destinations are, so they use a flooding algorithm: every incoming frame for
an unknown destination is output on all the LANs to which the bridge is connected except the
one it arrived on. As time goes on, the bridges learn where destinations are, as described
below. Once a destination is known, frames destined for it are put on only the proper LAN and
are not flooded.

The algorithm used by the transparent bridges is backward learning.As mentioned above,
the bridges operate in promiscuous mode, so they see every frame sent on any of their LANs.
By looking at the source address, they can tell which machine is accessible on which LAN. For
example, if bridge B1 in Fig. 4-42 sees a frame on LAN 2 coming from C, it knows that C must
be reachable via LAN 2, so it makes an entry in its hash table noting that frames going to C
should use LAN 2. Any subsequent frame addressed to C coming in on LAN 1 will be forwarded,
but a frame for C coming in on LAN 2 will be discarded.

The topology can change as machines and bridges are powered up and down and moved
around. To handle dynamic topologies, whenever a hash table entry is made, the arrival time
of the frame is noted in the entry. Whenever a frame whose source is already in the table
arrives, its entry is updated with the current time. Thus, the time associated with every entry
tells the last time a frame from that machine was seen.

Periodically, a process in the bridge scans the hash table and purges all entries more than a
few minutes old. In this way, if a computer is unplugged from its LAN, moved around the
building, and plugged in again somewhere else, within a few minutes it will be back in normal
operation, without any manual intervention. This algorithm also means that if a machine is
quiet for a few minutes, any traffic sent to it will have to be flooded until it next sends a frame
itself.

The routing procedure for an incoming frame depends on the LAN it arrives on (the source
LAN) and the LAN its destination is on (the destination LAN), as follows:

1. If destination and source LANs are the same, discard the frame.
2. If the destination and source LANs are different, forward the frame.
3. If the destination LAN is unknown, use flooding.

As each frame arrives, this algorithm must be applied. Special-purpose VLSI chips do the
lookup and update the table entry, all in a few microseconds.



4.7.3 Spanning Tree Bridges

To increase reliability, some sites use two or more bridges in parallel between pairs of LANs, as
shown in Fig. 4-43. This arrangement, however, also introduces some additional problems
because it creates loops in the topology.

Figure 4-43. Two parallel transparent bridges.
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A simple example of these problems can be seen by observing how a frame, F, with unknown
destination is handled in Fig. 4-43. Each bridge, following the normal rules for handling
unknown destinations, uses flooding, which in this example just means copying it to LAN 2.
Shortly thereafter, bridge 1 sees F,, a frame with an unknown destination, which it copies to
LAN 1, generating F; (not shown). Similarly, bridge 2 copies F; to LAN 1 generating F,; (also
not shown). Bridge 1 now forwards F, and bridge 2 copies F3. This cycle goes on forever.

The solution to this difficulty is for the bridges to communicate with each other and overlay the
actual topology with a spanning tree that reaches every LAN. In effect, some potential
connections between LANs are ignored in the interest of constructing a fictitious loop-free
topology. For example, in Fig. 4-44(a) we see nine LANs interconnected by ten bridges. This
configuration can be abstracted into a graph with the LANs as the nodes. An arc connects any
two LANs that are connected by a bridge. The graph can be reduced to a spanning tree by
dropping the arcs shown as dotted lines in Fig. 4-44(b). Using this spanning tree, there is
exactly one path from every LAN to every other LAN. Once the bridges have agreed on the
spanning tree, all forwarding between LANs follows the spanning tree. Since there is a unique
path from each source to each destination, loops are impossible.

Figure 4-44. (a) Interconnected LANs. (b) A spanning tree covering
the LANs. The dotted lines are not part of the spanning tree.
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To build the spanning tree, first the bridges have to choose one bridge to be the root of the
tree. They make this choice by having each one broadcast its serial number, installed by the
manufacturer and guaranteed to be unique worldwide. The bridge with the lowest serial
number becomes the root. Next, a tree of shortest paths from the root to every bridge and
LAN is constructed. This tree is the spanning tree. If a bridge or LAN fails, a new one is
computed.

The result of this algorithm is that a unique path is established from every LAN to the root and
thus to every other LAN. Although the tree spans all the LANs, not all the bridges are
necessarily present in the tree (to prevent loops). Even after the spanning tree has been
established, the algorithm continues to run during normal operation in order to automatically
detect topology changes and update the tree. The distributed algorithm used for constructing
the spanning tree was invented by Radia Perlman and is described in detail in (Perlman, 2000).
It is standardized in IEEE 802.1D.

4.7.4 Remote Bridges

A common use of bridges is to connect two (or more) distant LANs. For example, a company
might have plants in several cities, each with its own LAN. Ideally, all the LANs should be
interconnected, so the complete system acts like one large LAN.

This goal can be achieved by putting a bridge on each LAN and connecting the bridges pairwise
with point-to-point lines (e.g., lines leased from a telephone company). A simple system, with
three LANSs, is illustrated in Fig. 4-45. The usual routing algorithms apply here. The simplest
way to see this is to regard the three point-to-point lines as hostless LANs. Then we have a

normal system of six LANS interconnected by four bridges. Nothing in what we have studied so
far says that a LAN must have hosts on it.

Figure 4-45. Remote bridges can be used to interconnect distant LANSs.
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Various protocols can be used on the point-to-point lines. One possibility is to choose some
standard point-to-point data link protocol such as PPP, putting complete MAC frames in the
payload field. This strategy works best if all the LANs are identical, and the only problem is
getting frames to the correct LAN. Another option is to strip off the MAC header and trailer at
the source bridge and put what is left in the payload field of the point-to-point protocol. A new
MAC header and trailer can then be generated at the destination bridge. A disadvantage of this
approach is that the checksum that arrives at the destination host is not the one computed by
the source host, so errors caused by bad bits in a bridge's memory may not be detected.

4.7.5 Repeaters, Hubs, Bridges, Switches, Routers, and Gateways

So far in this book we have looked at a variety of ways to get frames and packets from one
cable segment to another. We have mentioned repeaters, bridges, switches, hubs, routers, and
gateways. All of these devices are in common use, but they all differ in subtle and not-so-
subtle ways. Since there are so many of them, it is probably worth taking a look at them
together to see what the similarities and differences are.



To start with, these devices operate in different layers, as illustrated in Fig. 4-46(a). The layer
matters because different devices use different pieces of information to decide how to switch.
In a typical scenario, the user generates some data to be sent to a remote machine. Those
data are passed to the transport layer, which then adds a header, for example, a TCP header,
and passes the resulting unit down to the network layer. The network layer adds its own
header to form a network layer packet, for example, an IP packet. In Fig. 4-46(b) we see the
IP packet shaded in gray. Then the packet goes to the data link layer, which adds its own
header and checksum (CRC) and gives the resulting frame to the physical layer for
transmission, for example, over a LAN.

Figure 4-46. (a) Which device is in which layer. (b) Frames, packets,
and headers.
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Now let us look at the switching devices and see how they relate to the packets and frames. At
the bottom, in the physical layer, we find the repeaters. These are analog devices that are
connected to two cable segments. A signal appearing on one of them is amplified and put out
on the other. Repeaters do not understand frames, packets, or headers. They understand
volts. Classic Ethernet, for example, was designed to allow four repeaters, in order to extend
the maximum cable length from 500 meters to 2500 meters.

Next we come to the hubs. A hub has a number of input lines that it joins electrically. Frames
arriving on any of the lines are sent out on all the others. If two frames arrive at the same
time, they will collide, just as on a coaxial cable. In other words, the entire hub forms a single
collision domain. All the lines coming into a hub must operate at the same speed. Hubs differ
from repeaters in that they do not (usually) amplify the incoming signals and are designed to
hold multiple line cards each with multiple inputs, but the differences are slight. Like repeaters,
hubs do not examine the 802 addresses or use them in any way. A hub is shown in Fig. 4-

47(a).

Figure 4-47. (a) A hub. (b) A bridge. (c) A switch.

Now let us move up to the data link layer where we find bridges and switches. We just studied
bridges at some length. A bridge connects two or more LANs, as shown in Fig. 4-47(b). When
a frame arrives, software in the bridge extracts the destination address from the frame header



and looks it up in a table to see where to send the frame. For Ethernet, this address is the 48-
bit destination address shown in Fig. 4-17. Like a hub, a modern bridge has line cards, usually
for four or eight input lines of a certain type. A line card for Ethernet cannot handle, say, token
ring frames, because it does not know where to find the destination address in the frame
header. However, a bridge may have line cards for different network types and different
speeds. With a bridge, each line is its own collision domain, in contrast to a hub.

Switches are similar to bridges in that both route on frame addresses. In fact, many people
uses the terms interchangeably. The main difference is that a switch is most often used to
connect individual computers, as shown in Fig. 4-47(c). As a consequence, when host A in Fig.
4-47(b) wants to send a frame to host B, the bridge gets the frame but just discards it. In
contrast, in Fig. 4-47(c), the switch must actively forward the frame from A to B because there
is no other way for the frame to get there. Since each switch port usually goes to a single
computer, switches must have space for many more line cards than do bridges intended to
connect only LANs. Each line card provides buffer space for frames arriving on its ports. Since
each port is its own collision domain, switches never lose frames to collisions. However, if
frames come in faster than they can be retransmitted, the switch may run out of buffer space
and have to start discarding frames.

To alleviate this problem slightly, modern switches start forwarding frames as soon as the
destination header field has come in, but before the rest of the frame has arrived (provided the
output line is available, of course). These switches do not use store-and-forward switching.
Sometimes they are referred to as cut-through switches. Usually, cut-through is handled
entirely in hardware, whereas bridges traditionally contained an actual CPU that did store-and-
forward switching in software. But since all modern bridges and switches contain special
integrated circuits for switching, the difference between a switch and bridge is more a
marketing issue than a technical one.

So far we have seen repeaters and hubs, which are quite similar, as well as bridges and
switches, which are also very similar to each other. Now we move up to routers, which are
different from all of the above. When a packet comes into a router, the frame header and
trailer are stripped off and the packet located in the frame's payload field (shaded in Fig. 4-46)
is passed to the routing software. This software uses the packet header to choose an output
line. For an IP packet, the packet header will contain a 32-bit (IPv4) or 128-bit (IPv6) address,
but not a 48-bit 802 address. The routing software does not see the frame addresses and does
not even know whether the packet came in on a LAN or a point-to-point line. We will study
routers and routing in Chap. 5.

Up another layer we find transport gateways. These connect two computers that use different
connection-oriented transport protocols. For example, suppose a computer using the
connection-oriented TCP/IP protocol needs to talk to a computer using the connection-oriented
ATM transport protocol. The transport gateway can copy the packets from one connection to
the other, reformatting them as need be.

Finally, application gateways understand the format and contents of the data and translate
messages from one format to another. An e-mail gateway could translate Internet messages
into SMS messages for mobile phones, for example.

4.7.6 Virtual LANs

In the early days of local area networking, thick yellow cables snaked through the cable ducts
of many office buildings. Every computer they passed was plugged in. Often there were many
cables, which were connected to a central backbone (as in Fig. 4-39) or to a central hub. No
thought was given to which computer belonged on which LAN. All the people in adjacent offices
were put on the same LAN whether they belonged together or not. Geography trumped logic.



With the advent of 10Base-T and hubs in the 1990s, all that changed. Buildings were rewired
(at considerable expense) to rip out all the yellow garden hoses and install twisted pairs from
every office to central wiring closets at the end of each corridor or in a central machine room,
as illustrated in Fig. 4-48. If the Vice President in Charge of Wiring was a visionary, category 5
twisted pairs were installed; if he was a bean counter, the existing (category 3) telephone
wiring was used (only to be replaced a few years later when fast Ethernet emerged).

Figure 4-48. A building with centralized wiring using hubs and a

switch.
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With hubbed (and later, switched) Ethernet, it was often possible to configure LANs logically
rather than physically. If a company wants k LANs, it buys k hubs. By carefully choosing which
connectors to plug into which hubs, the occupants of a LAN can be chosen in a way that makes
organizational sense, without too much regard to geography. Of course, if two people in the
same department work in different buildings, they are probably going to be on different hubs
and thus different LANs. Nevertheless, the situation is a lot better than having LAN
membership entirely based on geography.

Does it matter who is on which LAN? After all, in virtually all organizations, all the LANs are
interconnected. In short, yes, it often matters. Network administrators like to group users on
LANSs to reflect the organizational structure rather than the physical layout of the building for a
variety of reasons. One issue is security. Any network interface can be put in promiscuous
mode, copying all the traffic that comes down the pipe. Many departments, such as research,
patents, and accounting, have information that they do not want passed outside their
department. In such a situation, putting all the people in a department on a single LAN and not
letting any of that traffic off the LAN makes sense. Management does not like hearing that
such an arrangement is impossible unless all the people in each department are located in
adjacent offices with no interlopers.

A second issue is load. Some LANs are more heavily used than others and it may be desirable
to separate them at times. For example, if the folks in research are running all kinds of nifty
experiments that sometimes get out of hand and saturate their LAN, the folks in accounting
may not be enthusiastic about donating some of their capacity to help out.

A third issue is broadcasting. Most LANs support broadcasting, and many upper-layer protocols
use this feature extensively. For example, when a user wants to send a packet to an IP
address x, how does it know which MAC address to put in the frame? We will study this
question in Chap. 5, but briefly summarized, the answer is that it broadcasts a frame
containing the question: Who owns IP address x? Then it waits for an answer. And there are



many more examples of where broadcasting is used. As more and more LANs get
interconnected, the number of broadcasts passing each machine tends to increase linearly with
the number of machines.

Related to broadcasts is the problem that once in a while a network interface will break down
and begin generating an endless stream of broadcast frames. The result of this broadcast
storm is that (1) the entire LAN capacity is occupied by these frames, and (2) all the machines
on all the interconnected LANs are crippled just processing and discarding all the frames being
broadcast.

At first it might appear that broadcast storms could be limited in scope by separating the LANs
with bridges or switches, but if the goal is to achieve transparency (i.e., a machine can be
moved to a different LAN across the bridge without anyone noticing it), then bridges have to
forward broadcast frames.

Having seen why companies might want multiple LANs with restricted scope, let us get back to
the problem of decoupling the logical topology from the physical topology. Suppose that a user
gets shifted within the company from one department to another without changing offices or
changes offices without changing departments. With hubbed wiring, moving the user to the
correct LAN means having the network administrator walk down to the wiring closet and pull
the connector for the user's machine from one hub and put it into a new hub.

In many companies, organizational changes occur all the time, meaning that system
administrators spend a lot of time pulling out plugs and pushing them back in somewhere else.
Also, in some cases, the change cannot be made at all because the twisted pair from the user's
machine is too far from the correct hub (e.g., in the wrong building).

In response to user requests for more flexibility, network vendors began working on a way to
rewire buildings entirely in software. The resulting concept is called a VLAN (Virtual LAN) and
has even been standardized by the 802 committee. It is now being deployed in many
organizations. Let us now take a look at it. For additional information about VLANS, see
(Breyer and Riley, 1999; and Seifert, 2000).

VLANSs are based on specially-designed VLAN-aware switches, although they may also have
some hubs on the periphery, as in Fig. 4-48. To set up a VLAN-based network, the network
administrator decides how many VLANs there will be, which computers will be on which VLAN,
and what the VLANs will be called. Often the VLANs are (informally) named by colors, since it
is then possible to print color diagrams showing the physical layout of the machines, with the
members of the red LAN in red, members of the green LAN in green, and so on. In this way,
both the physical and logical layouts are visible in a single view.

As an example, consider the four LANs of Fig. 4-49(a), in which eight of the machines belong
to the G (gray) VLAN and seven of them belong to the W (white) VLAN. The four physical LANs
are connected by two bridges, B1 and B2. If centralized twisted pair wiring is used, there
might also be four hubs (not shown), but logically a multidrop cable and a hub are the same
thing. Drawing it this way just makes the figure a little less cluttered. Also, the term "bridge"
tends to be used nowadays mostly when there are multiple machines on each port, as in this
figure, but otherwise, "bridge" and "switch" are essentially interchangeable. Fig. 4-49(b)
shows the same machines and same VLANs using switches with a single computer on each
port.

Figure 4-49. (a) Four physical LANs organized into two VLANS, gray
and white, by two bridges. (b) The same 15 machines organized into
two VLANSs by switches.
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To make the VLANSs function correctly, configuration tables have to be set up in the bridges or
switches. These tables tell which VLANs are accessible via which ports (lines). When a frame
comes in from, say, the gray VLAN, it must be forwarded on all the ports marked G. This holds
for ordinary (i.e., unicast) traffic as well as for multicast and broadcast traffic.

Note that a port may be labeled with multiple VLAN colors. We see this most clearly in Fig. 4-
49(a). Suppose that machine A broadcasts a frame. Bridge B1 receives the frame and sees
that it came from a machine on the gray VLAN, so it forwards it on all ports labeled G (except
the incoming port). Since B1 has only two other ports and both of them are labeled G, the
frame is sent to both of them.

At B2 the story is different. Here the bridge knows that there are no gray machines on LAN 4,
so the frame is not forwarded there. It goes only to LAN 2. If one of the users on LAN 4 should
change departments and be moved to the gray VLAN, then the tables inside B2 have to be
updated to relabel that port as GW instead of W. If machine F goes gray, then the port to LAN
2 has to be changed to G instead of GW.

Now let us imagine that all the machines on both LAN 2 and LAN 4 become gray. Then not only
do B2's ports to LAN 2 and LAN 4 get marked G, but B1's port to B2 also has to change from
GW to G since white frames arriving at B1 from LANs 1 and 3 no longer have to be forwarded
to B2. In Fig. 4-49(b) the same situation holds, only here all the ports that go to a single
machine are labeled with a single color because only one VLAN is out there.

So far we have assumed that bridges and switches somehow know what color an incoming
frame is. How do they know this? Three methods are in use, as follows:

1. Every port is assigned a VLAN color.
2. Every MAC address is assigned a VLAN color.
3. Every layer 3 protocol or IP address is assigned a VLAN color.

In the first method, each port is labeled with VLAN color. However, this method only works if
all machines on a port belong to the same VLAN. In Fig. 4-49(a), this property holds for B1 for
the port to LAN 3 but not for the port to LAN 1.

In the second method, the bridge or switch has a table listing the 48-bit MAC address of each
machine connected to it along with the VLAN that machine is on. Under these conditions, it is
possible to mix VLANs on a physical LAN, as in LAN 1 in Fig. 4-49(a). When a frame arrives, all
the bridge or switch has to do is to extract the MAC address and look it up in a table to see
which VLAN the frame came from.

The third method is for the bridge or switch to examine the payload field of the frame, for
example, to classify all IP machines as belonging to one VLAN and all AppleTalk machines as
belonging to another. For the former, the IP address can also be used to identify the machine.



This strategy is most useful when many machines are notebook computers that can be docked
in any one of several places. Since each docking station has its own MAC address, just knowing
which docking station was used does not say anything about which VLAN the notebook is on.

The only problem with this approach is that it violates the most fundamental rule of
networking: independence of the layers. It is none of the data link layer's business what is in
the payload field. It should not be examining the payload and certainly not be making
decisions based on the contents. A consequence of using this approach is that a change to the
layer 3 protocol (for example, an upgrade from IPv4 to IPv6) suddenly causes the switches to
fail. Unfortunately, switches that work this way are on the market.

Of course, there is nothing wrong with routing based on IP addresses—nearly all of Chap. 5 is
devoted to IP routing—but mixing the layers is looking for trouble. A switch vendor might
pooh-pooh this argument saying that its switches understand both IPv4 and IPv6, so
everything is fine. But what happens when IPv7 happens? The vendor would probably say: Buy
new switches, is that so bad?

The IEEE 802.1Q Standard

Some more thought on this subject reveals that what actually matters is the VLAN of the frame
itself, not the VLAN of the sending machine. If there were some way to identify the VLAN in
the frame header, then the need to inspect the payload would vanish. For a new LAN, such as
802.11 or 802.16, it would have been easy enough to just add a VLAN field in the header. In
fact, the Connection ldentifier field in 802.16 is somewhat similar in spirit to a VLAN identifier.
But what to do about Ethernet, which is the dominant LAN, and does not have any spare fields
lying around for the VLAN identifier?

The IEEE 802 committee had this problem thrown into its lap in 1995. After much discussion, it
did the unthinkable and changed the Ethernet header. The new format was published in IEEE
standard 802.1Q, issued in 1998. The new format contains a VLAN tag; we will examine it
shortly. Not surprisingly, changing something as well established as the Ethernet header is not
entirely trivial. A few questions that come to mind are:

1. Need we throw out several hundred million existing Ethernet cards?
2. If not, who generates the new fields?
3. What happens to frames that are already the maximum size?

Of course, the 802 committee was (only too painfully) aware of these problems and had to
come up with solutions, which it did.

The key to the solution is to realize that the VLAN fields are only actually used by the bridges
and switches and not by the user machines. Thus in Fig. 4-49, it is not really essential that
they are present on the lines going out to the end stations as long as they are on the line
between the bridges or switches. Thus, to use VLANSs, the bridges or switches have to be VLAN
aware, but that was already a requirement. Now we are only introducing the additional
requirement that they are 802.1Q aware, which new ones already are.

As to throwing out all existing Ethernet cards, the answer is no. Remember that the 802.3
committee could not even get people to change the Type field into a Length field. You can
imagine the reaction to an announcement that all existing Ethernet cards had to be thrown
out. However, as new Ethernet cards come on the market, the hope is that they will be 802.1Q
compliant and correctly fill in the VLAN fields.

So if the originator does not generate the VLAN fields, who does? The answer is that the first
VLAN-aware bridge or switch to touch a frame adds them and the last one down the road
removes them. But how does it know which frame belongs to which VLAN? Well, the first



bridge or switch could assign a VLAN number to a port, look at the MAC address, or (heaven
forbid) examine the payload. Until Ethernet cards are all 802.1Q compliant, we are kind of
back where we started. The real hope here is that all gigabit Ethernet cards will be 802.1Q
compliant from the start and that as people upgrade to gigabit Ethernet, 802.1Q will be
introduced automatically. As to the problem of frames longer than 1518 bytes, 802.1Q just
raised the limit to 1522 bytes.

During the transition process, many installations will have some legacy machines (typically
classic or fast Ethernet) that are not VLAN aware and others (typically gigabit Ethernet) that
are. This situation is illustrated in Fig. 4-50, where the shaded symbols are VLAN aware and
the empty ones are not. For simplicity, we assume that all the switches are VLAN aware. If this
is not the case, the first VLAN-aware switch can add the tags based on MAC or IP addresses.

Figure 4-50. Transition from legacy Ethernet to VLAN-aware Ethernet.
The shaded symbols are VLAN aware. The empty ones are not.
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In this figure, VLAN-aware Ethernet cards generate tagged (i.e., 802.1Q) frames directly, and
further switching uses these tags. To do this switching, the switches have to know which
VLANSs are reachable on each port, just as before. Knowing that a frame belongs to the gray
VLAN does not help much until the switch knows which ports connect to machines on the gray
VLAN. Thus, the switch needs a table indexed by VLAN telling which ports to use and whether
they are VLAN aware or legacy.

When a legacy PC sends a frame to a VLAN-aware switch, the switch builds a new tagged
frame based on its knowledge of the sender's VLAN (using the port, MAC address, or IP
address). From that point on, it no longer matters that the sender was a legacy machine.
Similarly, a switch that needs to deliver a tagged frame to a legacy machine has to reformat
the frame in the legacy format before delivering it.

Now let us take a look at the 802.1Q frame format. It is shown in Fig. 4-51. The only change is
the addition of a pair of 2-byte fields. The first one is the VLAN protocol ID. It always has the
value 0x8100. Since this number is greater than 1500, all Ethernet cards interpret it as a type
rather than a length. What a legacy card does with such a frame is moot since such frames are
not supposed to be sent to legacy cards.

Figure 4-51. The 802.3 (legacy) and 802.1Q Ethernet frame formats.
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The second 2-byte field contains three subfields. The main one is the VLAN identifier,
occupying the low-order 12 bits. This is what the whole thing is about—which VLAN does the
frame belong to? The 3-bit Priority field has nothing to do with VLANs at all, but since changing
the Ethernet header is a once-in-a-decade event taking three years and featuring a hundred
people, why not put in some other good things while you are at it? This field makes it possible
to distinguish hard real-time traffic from soft real-time traffic from time-insensitive traffic in
order to provide better quality of service over Ethernet. It is needed for voice over Ethernet
(although in all fairness, IP has had a similar field for a quarter of a century and nobody ever
used it).

The last bit, CFI (Canonical Format Indicator) should have been called the CEIl (Corporate Ego
Indicator). It was originally intended to indicate little-endian MAC addresses versus big-endian
MAC addresses, but that use got lost in other controversies. Its presence now indicates that
the payload contains a freeze-dried 802.5 frame that is hoping to find another 802.5 LAN at
the destination while being carried by Ethernet in between. This whole arrangement, of course,
has nothing whatsoever to do with VLANs. But standards' committee politics is not unlike
regular politics: if you vote for my bit, | will vote for your bit.

As we mentioned above, when a tagged frame arrives at a VLAN-aware switch, the switch uses
the VLAN ID as an index into a table to find out which ports to send it on. But where does the
table come from? If it is manually constructed, we are back to square zero: manual
configuration of bridges. The beauty of the transparent bridge is that it is plug-and-play and
does not require any manual configuration. It would be a terrible shame to lose that property.
Fortunately, VLAN-aware bridges can also autoconfigure themselves based on observing the
tags that come by. If a frame tagged as VLAN 4 comes in on port 3, then apparently some
machine on port 3 is on VLAN 4. The 802.1Q standard explains how to build the tables
dynamically, mostly by referencing appropriate portions of PerIman's algorithm standardized in
802.1D.

Before leaving the subject of VLAN routing, it is worth making one last observation. Many
people in the Internet and Ethernet worlds are fanatically in favor of connectionless networking
and violently opposed to anything smacking of connections in the data link or network layers.
Yet VLANs introduce something that is surprisingly similar to a connection. To use VLANs
properly, each frame carries a new special identifier that is used as an index into a table inside
the switch to look up where the frame is supposed to be sent. That is precisely what happens
in connection-oriented networks. In connectionless networks, it is the destination address that
is used for routing, not some kind of connection identifier. We will see more of this creeping
connectionism in Chap. 5.

4.8 Summary

Some networks have a single channel that is used for all communication. In these networks,
the key design issue is the allocation of this channel among the competing stations wishing to
use it. Numerous channel allocation algorithms have been devised. A summary of some of the
more important channel allocation methods is given in Fig. 4-52.



Figure 4-52. Channel allocation methods and systems for a common

channel.
Method | Description
FOM Dedicate a frequency band to each station
WDM | A dynamic FDM scheme for fiber
TDM | Dedicate a time slot to each station
Pure ALOHA | Unsynchronized transmission at any instant
Slotted ALOHA | Random transmission in well-defined time slots

1-persistent CSMA

Standard carrier sense multiple access

Monpersistent CSMA
| CSMA, but with a prabability of p of persisting

P-persistent CSMA

Random delay when channel is sensed busy

CSMACD CEMA, but abort on detecting a collision

Bit map | Round-robin scheduling using a bit map

Binary countdown | Highest-numbered ready station goes next

Tree walk . Reduced contention by selective enabling

MACA, MACAW Wirgless LAN protocols

Ethernet - CSMA/CD with binary exponential backoff

FH3S Frequency hopping spread spectrum

D555 . Direct sequence spread spectrum

CSMACA Carrier sense multiple access with collision avoidance

The simplest allocation schemes are FDM and TDM. These are efficient when the number of
stations is small and fixed and the traffic is continuous. Both are widely used under these
circumstances, for example, for dividing up the bandwidth on telephone trunks.

When the number of stations is large and variable or the traffic is fairly bursty, FDM and TDM
are poor choices. The ALOHA protocol, with and without slotting, has been proposed as an
alternative. ALOHA and its many variants and derivatives have been widely discussed,
analyzed, and used in real systems.

When the state of the channel can be sensed, stations can avoid starting a transmission while
another station is transmitting. This technique, carrier sensing, has led to a variety of protocols
that can be used on LANs and MANSs.

A class of protocols that eliminates contention altogether, or at least reduce it considerably, is
well known. Binary countdown completely eliminates contention. The tree walk protocol
reduces it by dynamically dividing the stations into two disjoint groups, one of which is
permitted to transmit and one of which is not. It tries to make the division in such a way that
only one station that is ready to send is permitted to do so.

Wireless LANs have their own problems and solutions. The biggest problem is caused by
hidden stations, so CSMA does not work. One class of solutions, typified by MACA and MACAW,
attempts to stimulate transmissions around the destination, to make CSMA work better.
Frequency hopping spread spectrum and direct sequence spread spectrum are also used. IEEE
802.11 combines CSMA and MACAW to produce CSMA/CA.

Ethernet is the dominant form of local area networking. It uses CSMA/CD for channel
allocation. Older versions used a cable that snaked from machine to machine, but now twisted
pairs to hubs and switches are most common. Speeds have risen from 10 Mbps to 1 Gbps and
are still rising.



Wireless LANs are becoming common, with 802.11 dominating the field. Its physical layer
allows five different transmission modes, including infrared, various spread spectrum schemes,
and a multichannel FDM system. It can operate with a base station in each cell, but it can also
operate without one. The protocol is a variant of MACAW, with virtual carrier sensing.

Wireless MANs are starting to appear. These are broadband systems that use radio to replace
the last mile on telephone connections. Traditional narrowband modulation techniques are
used. Quality of service is important, with the 802.16 standard defining four classes (constant
bit rate, two variable bit rate, and one best efforts).

The Bluetooth system is also wireless but aimed more at the desktop, for connecting headsets
and other peripherals to computers without wires. It is also intended to connect peripherals,
such as fax machines, to mobile telephones. Like 801.11, it uses frequency hopping spread
spectrum in the ISM band. Due to the expected noise level 